
Open Source Version Control
Thomas Keller

HTWK Leipzig

University Of Applied Sciences

Department Computer Science, Mathematics & Natural Sciences

Bachelor Thesis

in Media Computer Science

Open Source Version Control

Thomas Keller

Tutor: Prof. Dr. Michael Frank

Co-tutor: Prof. Dr. Klaus Hering

Date of Completion: March 20th, 2006

I affirm that I have created this Bachelor Thesis independently and only

with the use of the documented references.

Leipzig, in March 2006 ...

This work is licensed under the terms of the GNU Free Documentation

License. See chapter Copyright Notices for details.

I would like to thank

My beloved girl (soon wife) Marlen,

who always supported me during the process of writing this work,

My tutor, Mr Prof Dr Michael Frank,

who always had a sympathetic ear for my concerns,

My good friend Chad Connolly from Delaware/USA,

who helped me a great deal to find and fix spelling issues in this work,

And finally my cousin Martin Fischer,

another guy who has helped me a lot with his positive criticism.

Thank you all!

Table of Contents

Preface...1

Vorwort...2

Document Conventions...3

 1 About Open Source Software..4

 1.1 The Origins of and the Drive Behind Open Source...6

 1.2 Open Source Licenses...8
 1.2.1 GNU General Public License (GNU GPL)..9
 1.2.2 GNU Lesser General Public License (GNU LGPL)..10
 1.2.3 BSD License..11
 1.2.4 Apache Software License..11
 1.2.5 Mozilla Public License (MPL)..12
 1.2.6 Other Open Licenses not primarily created for Software Licensing.................................12

 1.3 Developing the Open Source Way..12
 1.3.1 What is Needed to Organize an Open Source Project?..16
 1.3.2 Benefits of Open Source and Possible Business Models...19

 2 Version Control...23

 2.1 Classification...25

 2.2 History...27

 2.3 Architectures and Concepts...28
 2.3.1 Product Space and Version Space..28
 2.3.2 Database vs File System based Repository..30
 2.3.3 Centralized vs Distributed Version Control...32

 2.4 Tool Shootout – Feature Comparison of Popular OS Versioning Software..............................37
 2.4.1 Matured and Well-known: CVS / CVSNT..38
 2.4.2 The New Kid On The Block: Subversion..43
 2.4.3 For Highly Distributed Development: monotone..45
 2.4.4 Feature Matrix..47

 2.5 Best Practices for Version Control..48
 2.5.1 Check-in Only What Is Really Needed..48
 2.5.2 Commit regularly, in Small, Grouped Portions and only Working Code..........................49
 2.5.3 Branch when Needed and Keep your Branch Up To date with the Trunk........................50
 2.5.4 Do You Really Need to Lock it?..51

Glossary...52

List of References..58

Copyright Notices..60

License of this Work...60

License for Wikipedia contents..60

GNU Free Documentation License..60

Preface

Source Code Management (SCM), also often referred to as Software Configuration Management, is

the most important technique for software companies to manage their intellectual property. One of the

key technologies in SCM is Version Control (VC). It offers a variety of possibilities to support the

development cycle - e.g., by allowing the user to track and revert changes, save history information,

manage multi-user access to the source code, and more.

There are many products available which offer Version Control. These come with tight integration in

a certain development environment (e.g. Visual SourceSafe), or are advertised as very easy to set up,

administrate and access (Perforce). But is it really necessary to spend money on a commercial

solution? In small and medium-sized companies, there is likely no money for software which supports

the development cycle; the price pressure for software engineering is high enough anyway. And, if a

product's life-cycle ends, or if more than the initial five concurrent users need to get access to Version

Control, additional licenses may need to be bought.

One approach to overcoming the vicious circle of licensing is to use Open Source Software (OSS).

While many people believe that „something which does not cost any money cannot be good“ when it

comes to Open Source products, this is actually wrong. For example, official statistics about web

server usage shows that the Open Source web server Apache runs on about 70% of all webservers

around the world1. Even business models depend on Open Source products, such as MySQL AB2 (the

Swedish database developer) or Trolltech (the company behind the Qt Window Toolkit3) demonstrate.

This thesis is dedicated to both Open Source and Version Control and is thus organized into

two main sections:

The first section deals with Open Source Software in general and tries to give an insightful view as to

how Open Source Software is driven, how it is developed and examines the differences between

conventional software (CS) development and Open Source development.

The second section deals with Version Control, ranging from history, concepts, tools, and

ends with day-to-day usage tips.

Both sections should give the reader the theoretical and practical knowledge that should help them to

benefit from Open Source Software in general and also from one of the free SCM systems which are

reviewed in this work.

1 http://news.netcraft.com/archives/web_server_survey.html
2 http://www.mysql.com
3 http://www.trolltech.com

1

Vorwort

Softwarekonfigurationsmanagement (Software Configuration Management, SCM) ist ohne Frage die

wichtigste Technik für Software-Unternehmen, ihr intellektuelles Gut in Form von Bits und Bytes zu

verwalten. Eine der Kerntechniken von SCM ist Versionskontrolle (Version Control, VC), welche eine

Reihe von Möglichkeiten offenbart, den Entwicklungsprozess aktiv zu unterstützen, etwa indem

(frühere) Änderungen verfolgt und eingesehen werden, mehrere Benutzer gleichzeitig auf die

Codebasis selbst über Netzwerkgrenzen hinweg Zugriff erlangen können und vieles mehr.

Auf dem Markt gibt es eine Vielzahl von Produkten, die Techniken zur Versionskontrolle

unterstützen. Diese sind dann entweder eng in eine bestimmte Entwicklungsumgebung integriert (zum

Beispiel Visual SourceSafe), oder werden als besonders einfach aufsetzbar und administrierbar

dargestellt (Perforce). Aber ist es wirklich notwendig, in eine kommerzielle Lösung Geld zu

investieren, oder gibt es eventuell Alternativen? In kleineren und mittelständischen Unternehmen

(KMUs) ist oft kein Geld für teure Lizenzen von Softwareprodukten, die lediglich den

Entwicklungsprozess unterstützen sollen; der Preisdruck bei der Projektierung und

Softwareentwicklung ist ohnehin schon hoch genug. Und selbst wenn investiert wird, und der

Lebenszyklus des Produkts abläuft oder die Anzahl der erlaubten, gleichzeitigen Zugriffe auf das

Produkt überschritten wird, ist der Unternehmer oft gezwungen, zusätzliche Lizenzen und unter

Umständen sogar zusätzliche Hardware anzuschaffen, um die Entwicklung am Laufen zu halten.

Eine Möglichkeit, dem Teufelskreis der Relizensierung zu entkommen ist, Open Source

Software (OSS) einzusetzen. Obwohl viele Menschen glauben, "etwas, das nichts kostet, kann nichts

taugen", ist genau das Gegenteil der Fall. Es gibt für etliche Open Source Produkte mittlerweile

Firmen, die kommerzielle Unterstützung anbieten, sodass auch dem professionellen Einsatz im

Unternehmen nichts entgegensteht. Im Endeffekt wird dann zwar der Einsatz von Open Source nicht

komplett kostenlos, aber im direkten Vergleich schlagen die Open-Source-Pendanten mancher

Produkte meist die kommerziellen Lösungen.

Die Arbeit ist sowohl dem Thema Open Source Software, als auch dem Thema Versionskontrolle

gewidmet und unterteilt sich daher in diese beiden Hauptsektionen.

Beide Sektionen sollten dem Leser das nötige theoretische und praktische Wissen vermitteln, um von

Open Source Software zum einen, und zum anderen von einem der hier vorgestellten, freien

Versionskontrollsysteme zu profitieren. Eventuell erlangt der Leser sogar eine neue Sicht auf freie

Software und versucht die eigenen Bestrebungen bzw. die seiner Firma daran auszurichten.

2

Document Conventions

All technical terms are written recursive and marked with a superscript G - they are explained in the

glossary in chapter .

Quotes are written in italics and wrapped with double quotes, like this: "This is an example quote".

References to quotes are either given before the quote by a bibliographic reference [ReferenceYYYY]

or after the quote by a bibliographic reference or a footnote.

3

 1 About Open Source Software

The term "Open Source" was introduced during the foundation of the Open Source Initiative4 in 1998.

At that time, it was only a different term for what people of the Free Software Foundation5 were

doing since the mid-80's: promoting free software. "Free" in the sense that an open license, not

commercial, was applied to the software, and that everyone who wanted to use the software or make it

better could just do that, because he or she had access to the source-code and the right to modify it.

But "Free" does not necessarily mean that the software is given away for free. Open Source

Licenses allow the selling of Open Source Software, as long as the distribution always contains an

easy way of accessing the sources. A good example of this is GNU / Linux (see chapter 1.1), an

alternative operating system. Linux distributors like Mandriva6 (formerly Mandrake) or RedHat7 are

basing their products almost entirely on Free Software, but sell it in packaged, tested and reviewed

form for professional users and companies. They also offer services like training programs or support;

sometimes they even enrich their products with special proprietary softwareG.

Since all of these companies rely on Open Source, all of them are actively supporting the

community. It typically happens that hired software engineers develop components in a community

process, and if the specific component is deemed to be maturedG and stable, it will be used in the

commercial product later on. For RedHat, this community process happens in the Fedora Linux

Project8.

The concept behind Open Source does not just apply to software alone today. Generally, whenever

license restrictions apply without consideration to the fact that a product or service could be improved

upon or made available for everyone, people look for "free" or for "open" alternatives. One popular

example is the Wikipedia Project9 which provides a free encyclopedia. Another company put their

recipe for a drink called OpenCola10 under the GNU Public License and made it publicly available for

everyone on their website.

According to [Perens2006], Free "Open" Software is characterized by ten attributes, which were

introduced by Bruce Perens (one of the founders of the Open Source Initiative) in 1997. Primarily,

these attributes have been specific to the Debian Linux Project11, but Perens has removed these

specific parts later on to define the Open Source Definition. The most important attributes are:

4 htp://www.opensource.org
5 http://www.fsf.org
6 http://wwwnew.mandriva.com/
7 http://www.redhat.com/
8 http://fedora.redhat.com/
9 http://www.wikipedia.org
10 http://www.colawp.com/colas/400/cola467_recipe.html
11 http://www.us.debian.org

4

Free Redistribution

"The license shall not restrict any party from selling or giving away the software as a component

of an aggregate software distribution containing programs from several different sources. The

license shall not require a royalty or other fee for such sale."

Source Code

"The program must include source code, and must allow distribution in source code as well as

compiledG form. Where some form of a product is not distributed with source code, there must be a

well-publicized means of obtaining the source code for no more than a reasonable reproduction

cost–preferably, downloading via the Internet without charge. [...]"

Derived Works

"The license must allow modifications and derived works, and must allow them to be distributed

under the same terms as the license of the original software."

No Discrimination Against Persons or Groups or Against Fields of Endeavor

"The license must not discriminate against any person or group of persons. [...] The license must

not restrict anyone from making use of the program in a specific field of endeavor. For example, it

may not restrict the program from being used in a business, or from being used for genetic

research."

Distribution of License

"The rights attached to the program must apply to all to whom the program is redistributed

without the need for execution of an additional license by those parties." This means that rights

which are granted in an Open Source license may not be overridden by additional licenses or Non-

Disclosure AgreementsG (NDAs).

License Must Not Be Specific to a Product or Restrict Other Software

"The rights attached to the program must not depend on the program's being part of a particular

software distribution. [...]" otherwise the program alone cannot be distributed on its own. Also,

"The license must not place restrictions on other software that is distributed along with the

licensed software. [...]" which makes it possible e.g. to distribute Open Source Software and other

licensed software on the same medium.

License Must Be Technology-Neutral

Finally, "No provision of the license may be predicated on any individual technology or style of

interface.", which is directed against so-called "click-wrap" license agreements. These kind of

5

licenses are often displayed, for example, on websites before you are directed to your target. Since

no such kind of interface is possible in many forms of distribution (e.g. FTP / CD-ROM

distribution), this is prohibited.

More on specific licenses, which acknowledge these points, follows in chapter 1.2.

 1.1 The Origins of and the Drive Behind Open Source

The roots of Free Software go back to the 1960s and

1970s, when Richard Stallman was working at the

MIT Artificial Intelligence (AI) Lab [King1999]. At

this time there existed a community of "Hackers"

which shared the software they developed between

each other, and Stallman was part of this community.

The community was close-knit and small [Rasch2000],

and it was a matter of course that if one made an

improvement to a piece of software, he / she shared

this improvement with the others. Sharing was one of

the fundamentals for this community to work at all.

Stallman later said: "We didn't call our software 'free software', because that term did not yet exist;

but that's what it was." [King1999].

The community broke up in the early 1980s when the MIT discontinued their PDP-10 personal

computer, for which all the software had been written for. There was no way to port this software

over to other systems, and as time went by, many of the original hackers of the AI lab had been hired

by spin-offs of the MIT or other companies and worked on different projects. Stallman: "We couldn't

sustain ourselves. This was the hardcore of the free software hackers, and now it was gone."

[King1999].

The general fact that a program, proprietary designed and developed by a commercial company, could

not be altered by the end user was not a big worry to the developers back in the day. They thought

that they developed good software and made good money, so what could be wrong with that?

Well, for Richard Stallman it was an issue. Going over to the proprietary software world and

signing the NDAs was not an option, as he felt more comfortable with his fellow hackers. Quitting

6

Illustration 1: Richard Matthew Stallmann -

source: http://de.wikipedia.org/wiki/

Bild:Richard_Matthew_Stallman.jpeg

completely and leaving the computer science was no option either, so he asked himself: "[...]was

there a program or programs [that] I could write, so as to make a community possible again?"

[King1999]

Out of this insight Stallman created the GNU Project12 in September 1983. The overall aim of the

GNU Project was (and still is) to create a free, full-featured operating system which could be used and

modified by any computer user like it was back in the "old days". The recursive acronym "GNU"

stands for "GNU is Not Unix" in this context [GNU2006]. Unix was a proprietary operating system at

the time, proven stable and widely adopted, and GNU should introduce a free, but compatible version

of it. To be able to work independently from any licensing issues on the project, Stallman quit his job

at the MIT in January 1985 and started to work on GNU. Also, in October of the same year, Stallman

founded the Free Software Foundation. Many developers joined his effort, mostly volunteers, but

some had been paid by companies to develop needed parts.

The project was very successful over the years and created many

so-called user space programsG; the GNU Compiler Collection

(GCC)13, or Emacs14 (a popular text editor) as a couple of

examples. Only one thing was missing over the years and made

only small improvements: the kernelG, called GNU Hurd. The

work on Hurd started in 1990 and up until today (2006) no

stable version of the kernel was published.

In 1991 Linus Torvalds began his work on the Linux Kernel15,

and publicly announced this on an Internet newsgroup about the

Minix (an operating system derived from Unix and developed by

Andrew Tanenbaum): "I'm doing a (free) operating system (just

a hobby, won't be big and professional like gnu) for 386(486)

AT clones..." [Linux2006].

His approach differed in some technical ways in comparison to

GNU Hurd, and also, Linux was not supposed to be Open Source

right from the start. Not until 1992 was the GNU GPLv2 applied to the Kernel and could have been

called "Free Software" from then on.

Today the word "Linux" is resounded throughout the land as a free operating system, but to be

12 http://www.gnu.org
13 http://gcc.gnu.org
14 http://www.gnu.org/software/emacs/
15 http://kernel.org

7

Illustration 2: Linus Torvalds, 2002 -

source: http://en.wikipedia.org/wiki/

Image:Linus_Torvalds.jpeg

correct, "Linux" is only the kernel of it. Many other programs and tools from the GNU project work

together and make the operating system complete, so its more correct to speak of GNU/Linux when

talking about it.

Having the terms "Open Source" and "Free Software" heard in many places, it might be interesting if

there is actually a distinction between these two? This is a big controversy throughout the community.

The OS movement's main goal seems to be "higher-quality software", while the FSF's main goal is

that the software is "free", as in "freedom of speech". Stallman put it like this:

"Free Software is a political action which places the principle of freedom above

everything else. It is completely different from Open Source, which is a purely practical

way of getting software written, and doesn't raise the point that users deserve freedom.

Open Source has no ideology." [King1999]

Still, the term "Open Source" is more common today than "Free Software", and one cannot say that an

Open Source developer or user is free of any political attitude. It is probably best to say that the Open

Source movement has its roots in the Free Software Foundation and to acknowledge that Open Source

is about more than getting a piece of software for free.

Proprietary, Closed-Source Software will always be the enemy of the real hardliners of the FOSS, the

Free and Open Source Software, while others try to join the best of these two worlds.

 1.2 Open Source Licenses

The Open Source community is big and diverse, and it is easy to say the same about the amount of

Open Source licenses available. For a non-lawyer (and most developers have no judicial knowledge),

it is hard to oversee the jungle of different licenses, and it is even more complicated to find a license

which fits all the needs.

Still, the biggest problem the community has yet to face is the incompatibility between certain

licenses. If a developer choses to include a libraryG which is, for example, licensed under the terms of

the Mozilla Public License (MPL), and his / her project itself is licensed under the terms of the GNU

General Public License (GNU GPL), he / she is not legally allowed to do so, because the MPL

restricts some of the rights the GPL offers.

Furthermore, it seems that many licenses have been primarily created to credit a certain company, but

do not bring any new aspects to the original license. A good example for this is the Sun Public

License (SPL), which is used by Sun Microsystems for their Open Source products. The SPL is

8

nothing else than a slightly adapted "version" of the Mozilla Public License (MPL), used by the

Mozilla Foundation and formerly set up by Netscape, in which the main difference is that the

company credit "Netscape" has been replaced by "Sun". The website of the Open Source Initiative

lists currently more than 50 licenses which have been approved by them and thus can be named "OSI

certified", since they fulfill all ten aspects of the Open Source Definition16. Obviously, there have

been announced plans to reduce this number by the OSI in early 2005, nothing has happened until

today17.

Most Open Source licenses have in common, that they deny any warranty to the end user; the

software is provided "as is". This is an important fact if a company decides to use Open Source

Software for critical processes. If the software fails and creates money loss or other damage, there is

no one to blame, unless a specific agreement has been made with the distributor of the software,

which may include additional warranty clauses (this is not forbidden or covered by most Open Source

licenses). After that has been said, one can understand that Free / Open Source Software does not

necessarily means that the software is gratis or runs free of charge. Still, FOSS is supposed to have a

lower TCOG value than Proprietary Software18.

The next chapters give a short overview over the most important Open Source licenses, their strengths

and weaknesses, and the compatibility between each other. They are based on the comments of Jonas

Kölker [Licenses2006] on different software licenses and explained further where applicable.

What kind of license should be chosen when a new project is started? This is hard to answer.

One should use the one that fits the needs of the project perfectly, but still is somehow accepted and

used in the community.

 1.2.1 GNU General Public License (GNU GPL)

The GNU GPL, or GPL for short, is the most popular Open Source license and also the most used

one19. The license exists in two versions; a third, renewed version is currently discussed in the

community, and version 2, the most recent one as of today, is dated on June 1991. Richard Stallman

is the original author of version 1 which was published in 1989 primarily for the use in the GNU

project. For version 2 and version 3, Stallman worked and still works together with Eben Moglen,

16 As of 02/02/06, 58 licenses were listed: http://www.opensource.org/licenses/index.php
17 http://www.eweek.com/article2/0,1895,1858314,00.asp
18 A study by Soreon Research from 2004 shows that the intial costs of Open Source Software is about 25% lower

compared to Proprietary Software, even if a certain amount of risk-costs are applied:
http://www.soreon.de/site1/index.php/german/soreon_studien/kassensturz_open_source_und_propriet_re_software_
im_vergleich_update_2004_95_seiten_31_abbildungen_und_tabellen/kassensturz_open_source_und_propriet_re_so
ftware_im_vergleich_update_2004__3

19 Based on SourceForge statistics, more than 50% of all listed projects are licensed under the terms of the GNU GPL,
http://sourceforge.net/softwaremap/trove_list.php?form_cat=14, last viewed 02/04/06

9

Professor for law and history at the Columbia University.

Both, version 1 and version 2, are "forward compatible". This means

that any program can be licensed under the terms of a newer version

of the license as long as the following license header exists (here for

version 2):

"This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License as

published by the Free Software Foundation; either version 2 of

the License, or (at your option) any later version."20

The GPL has a strong Copyleft, "[...] a general method for making a

program or other work free, and requiring all modified and extended

versions of the program to be free as well."21

A Copyleft license has to not only ensure that there are several

"freedoms" applicable on the software, but especially that these freedoms cannot be removed from the

software through redistribution (see "Derived Works" in the Open Source Definition in chapter 1).

Critics of the GPL often state its "viral" or "pervasive" attributes through to this Copyleft, since every

software which includes GPL code has to be released under the GPL itself. However, this is the only

way to ensure that code which was once Open Source cannot become Closed Source.

A popular method to circumvent the pervasion brought by the GPL is to release a software

under two licenses, a commercial one which is applied for a fee and a free one like the GPL. This is

then called Dual Licensing; derived works do not have to be put under GPL and any Intellectual

PropertyG (IP) is safe. Examples for dual licensed software products are the products from MySQL

AB and Trolltech mentioned in the preface.

 1.2.2 GNU Lesser General Public License (GNU LGPL)

The first version of the GNU LGPL was introduced together with the GNU GPL version 2 by

Stallman and Moglen in 1991. It was originally named GNU Library General Public License, because

it primarily allowed (and allows) the inclusion of proprietary code in the form of software libraries.

The license puts the same restrictions (such as the GPL) on the program itself, but does not apply

these restrictions to other software which merely links with the program, and thus does not have such

a strong Copyleft as the GPL.

20 http://www.gnu.org/licenses/gpl.html, section "How to Apply These Terms to Your New Programs"
21 http://www.gnu.org/copyleft/copyleft.html

10

Illustration 3: Eben Moglen -

source: http://en.wikipedia.org/

wiki/Image:Eben_Moglen.jpeg

With version 2.1, it got its new name: GNU Lesser General Public License22. The GNU LGPL is fully

compatible with the GNU GPL, since it contains a passage23 which allows an author of derived work

to put the software under the GPL. This is irreversible, though.

 1.2.3 BSD License

The Berkeley Software Distribution License is one of the most widely used licenses for free software.

It is a very free license which allows the mixture between open and closed source, similar to the GNU

LGPL, but without restrictions on the main program. Therefore, it puts software released under this

license relatively closer to Public DomainG than the GPL.

Since 1999, a modified version of the BSD License and the GPL are compatible, thus one can mix

code released under either license. The license text itself is Public Domain as well, and can be

adapted and credited for own projects.24

 1.2.4 Apache Software License

The Apache Software License is a free software license, which is primarily used by the Apache

Software Foundation 25 (ASF) for all of their software products. Software released under this license

can be used in Commercial and Open Source Software development, though it is not recommended to

use it for new Open Source projects because of the missing Copyleft restrictions.

Despite the fact that the compatibility has been improved with other Copyleft licenses over time, a

certain part makes this license still incompatible with the GNU GPL in the eyes of the GNU project:

"[The license] has certain patent termination cases that the GPL does not require.

(We don't think those patent termination cases are inherently a bad idea, but nonetheless

they are incompatible with the GNU GPL.)"26

The ASF has their own determination about the compatibility of both licenses, though.27

22 In Feburary 1999, Richard Stallman wrote the article entitled "Why you shouldn't use the Library GPL for your next
library", where he explains amongst other things why this name change happened:
http://www.gnu.org/licenses/why-not-lgpl.html

23 http://www.gnu.org/copyleft/lgpl.html: "3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library.[...]"

24 http://en.wikipedia.org/wiki/BSD_License
25 http://apache.org
26 http://www.gnu.org/licenses/license-list.html
27 http://www.apache.org/licenses/GPL-compatibility.html

11

 1.2.5 Mozilla Public License (MPL)

The Mozilla Public License is, like the Apache Software License, a license without strong Copyleft. It

has some restrictions in it which make it incompatible with the GNU GPL. The first version was

created by the lawyer Mitchell Barker when she worked for Netscape Communications Corporation.

The license is used for most products of the Mozilla Foundation28, which also published

version 1.1 of the license. Today Baker is a member of the Board of Directors in the foundation.

 1.2.6 Other Open Licenses not primarily created for Software
Licensing

The overwhelming success of Free Software has made other people looking for alternatives in general

content licensing. Most Source Code licenses seem to be not applicable for that, so there are a variety

of other licenses for specific purposes, ranging from artistic works, to fonts and documentation. A

closer look at these licenses is out of scope of this work; an annotated list can be found in

[Licenses2006].

 1.3 Developing the Open Source Way

Now an interesting question is how all this Open Source development actually happens. To answer

this question, we need to have a closer look at the initial conditions of both Conventional Software

Development (CSD), often referred to as closed-source or proprietary software development, and

Open Source Development (OSD).

In CSD, we have two roles most of the time: a consumer / client role and a contractor / developer role.

Often the client is not a specific company or person, but is rather described abstractly as "target

group", if a general software product is developed for a broader market range. Another form of

conventional software development is in-house development, where a department of a larger company

develops software components which are used either as part of conventional products (e.g. software

which runs on certain hardware, like car electronics, Video/ CD-Player, aso.), or drive the internal IT

infrastructure, like software for insurances, banks or even public authorities.

The following graphic illustrates the whole process of CSD:

28 http://www.mozilla.org

12

After the requirements have been reviewed, a rough concept is created and discussed. If all of the

requirements have not been incorporated or certain functionalities do not operate as desired, this part

is repeated until the customer gives his OK and awards a contract. Now a detailed concept is created

and afterwards the implementation is started. Before the process finishes and the software is

delivered, the implementation is tested and reviewed by the QA (Quality Assurance) team. If it does

not pass all tests or certain requirements have not been implemented as described in the detailed

concept, the process is pushed back to implementation until all of the all requirements are met.

Now, in OSD there is no client role. One could say that client and contractor are the same: it is the

developer himself who is asking for a certain software or functionality. There could be a couple of

different reasons for him to start the development:

• There are no or no free alternatives of a particular software (typical desktop development),

• Current implementations lack certain features or do not run stably,

• The software is needed to make a certain hardware work (driver development),

• Personal or academical interest in a certain technique, environment or software,

• The fun of programming and the resulting personal reputation.

In many OS projects where there is no clear engineering process available, nobody is forced to create

a detailed concept of what he is doing before he starts implementing. Also, there is no time, interest or

even resources for bureaucratic overhead [Asklund2002]. If something is up for discussion and no

compromise could be achieved, the "team leader" has the final say. The team leader is the original

author of the software in most cases, or the maintainer of a certain area within a bigger software.

Linus Tovalds is, for example, the ultimate authority for the Linux Kernel and he decides in the end

13

Drawing 1: Software engineering process in CSD - source: own drawing

Tender Preparation
(includes Rough Concept)

Client awards
Contract

Requirements
Review

Detailed
ConceptImplementationReview / Test

Delivery

which extensions go into the kernel and which do not.

The following graphic takes a closer look at the Change Management ProcessG in OS projects. At

first, a particular change proposal is put up for discussion. Then, a test implementation is created,

usually by the developer or by the group who puts up the proposal. If the implementation is judged as

"good enough" during a review, the implementation is taken over into the software. The review is

done by team leaders; in bigger projects it is done by "coordinators" or "moderators". These people

got their status because they are long-term contributors, so they have enough knowledge to evaluate

the change submission. The procedure can be found in many OS projects, for example the KDE

project, or, as already mentioned, the Linux Kernel development:

In CSD, the Change Management Process is quite different. Most traditional projects review change

proposals using a Change Control BoardG (CCB) and assign approved proposals to developers for

implementation [Asklund2002] - there is no "free" choice of what a particular developer can do as it

is in OS projects.

The CCB involves people from the Project Management, the Development folks, the QA team and

other persons who are working in the operational area. In smaller projects only three people (the

client, a developer and the project manager) are concerned with that, and in larger projects up to 30

people can be involved in the CCB.29

The following graphic illustrates Change Management in conventional software projects:

29 freely adapted from http://www.software-kompetenz.de/?7225

14

Drawing 2: Change Management Process in OSD - source: own drawing, based on [Asklund2002]

Change Proposal Document Change Implementation

Review
(Moderator / Coordinator)

Verification

 Approve

Reject

Many OS projects have very modest websites and use standard tools for project management,

documentation and testing. Programs are often just available as source files which need to be

configured and compiled on the clients computer. Real packaging is done by distributors which

include the software within their distribution in binary and in source form (since this is required by

most OS licenses). This helps the developers to concentrate on their most important task: develop

software.

One major distinction between CSD and OSD is how communication takes place between team

members. In general there are two forms of communication, synchronous communication (face-to-

face or technologically supported instant communication via telephone, chat, etc.) and asynchronous

communication (emailing, mailing lists, community boards, etc.).

In CSD, development happens locally most of the time (in "Collocated Teams" [Kotulla2002]), so

synchronous communication takes place. Issues can be discussed almost instantly; if a problem arises

during development (this could be of technical as well as of social nature), the problem can most

likely be resolved within a few hours or a day.

In OS projects, the communication is asynchronous, and therefore good communication skills are

even more important. Questions are answered with a huge latency, if the other developers are

scattered around the world and live in different time zones. Therefore asking and answering precisely

is a prerequisite in this regard.

[Kotulla2002] speaks of so-called "Virtual Teams" in this context: "Because of the constantly high

need to communicate, managing Virtual Teams is the hardest part. [...] A problem, which could have

been solved by a local team within a few hours, could easily take almost a week in Virtual Teams."

15

Drawing 3: Change Management Process in CSD - source: own drawing, based on [Asklund2002]

Change Proposal Document Change

Implementation

Review
(Change Control Board)

Verification

 Approve

Reject

Many OS developers have a full-time job and are doing the work on their project in their spare time.

Responsibilities are handled a bit slacker; obviously a free software author feels responsible for his

program, he cannot and will not give any guaranty if any part of his program may do something what

it should not do30.

Since there is no financial or other relationship between the actual user and the developer(s) of an

Open Source Software, harsh communication skills of one party will not work out at all; the user

could get frustrated and switch the software, or the developer(s) could simply ignore the user's request

for an improvement or a bug fix, if he / she does not stand to rules. However, politeness and

thoughtfulness are needed for internal communication between developers as well, even if the

opposite part is not right in his point of view: since the software is developed in an open manner,

nobody can bar a developer to start a rival project based on the sources of the original one.

The next part will now give an overview which tools are used in OSD to overcome the lack of

synchronous communication, and what else is needed to set up and to manage an Open Source

project.

 1.3.1 What is Needed to Organize an Open Source Project?

It is relatively easy to start on a new Open Source project. Usually, somebody develops a little piece

of software on his own, and if he finds it stable enough, he shares the source code with others. This

can happen through mailing lists or newsgroups (*.announce), for example, or by announcing the

software on portals, like FreshMeat31. Usually a free software license is applied on the code so that it

can be freely modified by others. If the software is found useful by others as well, they download it

and give feedback to the original developer. More seasoned users may even send in patchesG, small

chunks of code, to expand the functionality or fix problems they discovered inside the code. Out of

this little micro cosmos many Open Source projects have been established in the past.

The more users download the program, use it and give feedback, and the more developers join

the development, it becomes hard to organize everything by hand. At this time several well-known

tools come into play to ease the interplay between end users and developers. A Version Control server

is set up so that every developer has access to the code base while being in sync with the code

changes from other developers. A mailing list is created to allow easy email communication between

30 Most Open Source licenses discussed earlier do consider this fact as well. See chapter 1.2 for more details.
31 http://www.freshmeat.net

16

all team members. An issue tracking system is set up to organize the way that bugG reports, feature

and help requests are handled. Finally a Wiki32 is eventually set up to speed up the creation of

documentation, FAQs and general websites of the project.

While there are many software packages available for each of the mentioned tasks (commercial

software as well as Open Source Software), certain packages have been evolved to standard packages

effectively. Most of the software is web-based, so there is probably no restriction on what platforms it

can run. On the other hand, binary components are also often available on platforms like Microsoft

Windows, on which it is not easy to compile software from sources without bigger knowledge or even

proprietary software packages. Still, it is recommended that a development system set up with these

components runs a Linux / Unix operating system, because there are generally more web resources

available which help on administrative tasks.

Version Control is done by CVS33, the Concurrent Versions System, which is slightly replaced by its

successor Subversion (SVN)34; we take a closer look at both systems in the second section.

Email communication is mostly setup with GNU's Mailman35, which has been developed by Barry A.

Warsaw for almost ten years. Mailman is easy to configure through its matured web interface.

The de facto standard for issue tracking systems is the free Bugzilla36, developed by the

Mozilla Foundation, the creator of many other popular free software products like the Firefox browser

or the Thunderbird email client. Since it is used for all of these products, it is under heavy

development. Their list of installations37 looks like a big who is who in both Open Source (KDE,

Linux Kernel, Eclipse, etc) and Closed Source (NASA, Netscape, VMWare, Siemens, etc) software

development.

For Wiki systems, there has not yet evolved a standard software, only a common way of using these

kind of systems. The first Wiki was WikiWikiWeb38, developed by Ward Cunningham in 1995. Its

syntax has many things in common with modern wiki software like MediaWiki39, the system which

drives the Wikipedia project and many others. For almost any platform, there exists a Wiki

implementation, and most of them are free software as well.

32 A Wiki is a dynamic website, which allows to add and edit contents almost in realtime - without any interfering
workflows - directly in place. It is probably the fasted way of collaborative web publishing today; the name "Wiki"
comes from Hawaiian "wiki wiki" which means "fast".

33 http://ximbiot.com/cvs/
34 http://subversion.tigris.org
35 http://www.gnu.org/software/mailman/index.html
36 http://www.bugzilla.org
37 http://www.bugzilla.org/installation-list/
38 http://c2.com/cgi/wiki
39 http://www.mediawiki.org/wiki/MediaWiki

17

One now has the choice to either set up all of these services by hand or to use a common platform

where everything is provided in an integrated environment. The most popular platform for this

purpose is more than likely SourceForge40.

SourceForge is a member of the Open Source Technology Group (OSTG)41, which was formerly

known as Open Source Development Network (OSDN). The group provides services around Open

Source Software, primarily through its different portals which serve commercial and non-commercial

purposes. The popular news portal SlashDot42 and the previously mentioned site FreshMeat are

members of these portals. SourceForge is the biggest portal for Open Source Software, currently

listing more than 100.000 projects and almost 1.3 million users.

To host a project on SourceForge, one needs to register it and to put it under an Open Source license.

After the registration has been approved, one can instantly start with the development by accessing

the supplied CVS / Subversion server, and can setup a web page on the provided disk space. Other

services include a user forum, a simple bug tracking software and more. The whole service is totally

free of charge.

Having all of the needed tools available does not make a good Open Source project though. There are

a couple of "soft skills" which should make the project a real success:

1. Accept patches - nobody's code is perfect, allow others to improve it.

2. Do regular releasesG - show the users somebody is working on the project.

3. Write a good documentation - without a good documentation, it is likely that nobody will join

the efforts if the code itself is not self-describing, and well, most code is not.

The next part explains why it could be interesting for proprietary software companies to use and

maybe even participate in Open Source development in one way or the other.

40 http://sourceforge.net
41 http://www.ostg.com
42 http://slashdot.org

18

 1.3.2 Benefits of Open Source and Possible Business Models

Open Source Software is already used today by many companies and, without a doubt, plays a more

important role than ever; in fact, Open Source products exist in many areas which do not even have a

commercial competitor anymore, or the market share of this competitor is negligible. For example, if

one looks for a Java Enterprise IDE (Integrated Development Environment) you pretty much have the

choice between Eclipse43, developed under an OS license by the Eclipse Foundation (which includes

industrial leaders like IBM, Borland SuSE and others) since 200144, and NetBeans45, which became

Open Source in 2000 and whose main sponsor is still the company of the once commercial product,

Sun Microsystems46. So for development-specific tasks OSS is already the way to go for many

companies which are not bound to a mainly proprietary platform like .Net47.

On the other hand, Open Source Software is also a political issue. Many European countries

have plans to adopt or already have adopted OSS for their public body, and drop proprietary solutions

like Windows or Office in favor of Linux and OpenOffice.org. A popular example is the LiMux48

project: the city of Munich (Germany) replaces specific software on Desktop PCs at the end of their

normal life cycle with Open Source Software, while the interoperability between open and proprietary

solutions is ensured with additional software and tools. Europe therefore promotes OSS greatly; for

example, in public tenders Open Source solutions are preferred in comparison to proprietary ones.

One of the reasons for this fact is planning reliability. There is no "end of lifetime" for OSS solutions,

since the software can always be adapted and recompiled to run on newer hardware or to support new

features - with minimal effort. Also, specifications of file formats and protocols or general

documentation are freely available and not proprietary licensed, which makes the building of custom

solutions based on Open Source easier and less expensive.

As already mentioned, Open Source does not necessarily mean "free of charge", so one can earn

money through Open Source Software, though other commercial aspects come into play. Eric

Raymond describes different business models which are based on Open Source in chapter "Indirect

Sale-Value Models" of his essay "The Magic Cauldron" [Raymond2000]:

43 http://www.eclipse.org
44 Information taken from http://www.eclipse.org/org/
45 http://www.netbeans.org
46 taken from http://www.netbeans.org/about/index.html
47 .Net is an open standard, though free (good) alternatives to Microsofts Visual Studio .Net are still rare. The

community tries to bring .Net to Linux with the mono project (http://www.mono-project.com), but still has only
partial support for Microsoft-specific classes like System.Windows.Forms. It is more likely that one can compile a
mono source package under Visual Studio .Net without compile errors than vice versa.

48 http://www.muenchen.de/Rathaus/dir/limux/english/147197/index.html

19

1. Sell Services, Not the Product Itself ("Give Away the Recipe, Open a Restaurant")

This business model is adapted by RedHat, MySQL AB, MarchHare (the company behind CVSNT

which will be later discussed) and many others: the main product is put under Open Source, while

the company behind the product sells support contracts, certification services and more. If a

closed-source software product has a small market share, opening its source would boost the

market acceptance. Raymond says that "[a product is] likely to generate more value as a market-

builder than as a secret tool" if the manufacturer understands, that the "true core asset is actually

the brains and skills of the people"49 working for him.

Companies also could use that model and try to support (sponsor) already existing Open

Source projects. The developers could receive a contract which allows them to spend a certain

amount of their work time on the Open Source project, while the company could offer services

around the software or create a product of it. Since the main development happens in-house, the

company would be able to quickly react on support / feature requests and bug reports.

2. Concentrate on Innovation ("Widget Frosting")

Raymond targets this model on hardware manufacturers which need to supply drivers and UI tools

for their products usually for no additional charge. Obviously, there is the fear that by opening the

specifications, certain important things about how the hardware operates are revealed; however,

this is no longer true. Most products have a very short market window of six to twelve months

today, so it would take a competitor much too long to get to know how your hardware is operates.

Raymond quotes the former KGB chief Oleg Kalugin about this issue, who got this insight

even earlier: "For instance, when we stole IBMs in our blueprints, or some other electronic areas

which the West made great strides in and we were behind, it would take years to implement the

results of our intelligence efforts. By that time, in five or seven years, the West would go forward,

and we would have to steal again and again, and we'd fall behind more and more."50

Another benefit of opening driver development would be that the company could just

concentrate on innovation of the hardware product, rather then putting manpower in developing

drivers and software, while these efforts would be dropped anyways after some time for

economical reasons when the product's life-cycle is over.

3. "Accessorizing"

By selling accessories for Open Source Software (this could be everything from mugs and T-shirts

to books and professional documentation) revenue can be created. Raymond mentions "O'Reilly &

49 http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/ar01s09.html
50 http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/ar01s18.html

20

Associates Inc., publishers of many excellent reference volumes on open-source software" 51 as an

example for this business model.

There are other models imaginable which include the concentration / commercialization of the content

or brand of the Open Source product. However, these models have only been applied by a very few

companies as of now.

Doing closed-source development is mainly argued with protecting competitive advantages, or to hide

confidential aspects of a business plan. While the second "reason" is no real reason, but leads to the

fact that the proprietary application is badly designed, the first one needs more examination.

Raymond says, that "[the] real question is whether your gain from spreading the development load

exceeds your loss due to increased competition from the [competitor which uses your disclosed

source]" and many people seem to underestimate the "functional advantage of recruiting more

development help"52.

One has to say though that not every software product, which is developed in a closed manner,

qualifies itself to be "opened". If there are already very popular Open Source projects which provide

the same functionality and the market niche is very small, it may be hard to attract developers from

the community and to keep the project vital. However, it is not a problem to step back. For example

subsequent versions of a software could be developed as closed source again53, but one has to

acknowledge, that older versions cannot be relicensed afterwards if they've been once licensed under

the terms of an Open Source license. A market analysis should therefore always be done before the

decision to open a particular software takes place, in order to prevent running into the above

mentioned problems.

Sometimes opening a software is the only way to attack a monopoly of another software vendor. In

1998, Netscape Communications decided to open the sources of their Internet suite Netscape

Communicator, which included the browser Netscape Navigator. This was once a commercial

product in the early 90's and very popular, until Microsoft decided to give their own browser Internet

Explorer away for free (but bundled with their commercial operating system Windows). On the date

that Netscape opened the Sources for the Communicator, the so-called browser wars were over: the

Internet Explorer won as it had more than 90% market share. With Internet Explorer 6, Microsoft

51 http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/ar01s09.html
52 http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/ar01s06.html
53 Borland released their Database Management System InterBase 6 under a free license in 2000. After their

management changed, it was decided to release further versions (beginning with version 6.5) again as closed source
and to stop the support and development of the free software project which managed the publically released sources.
Soon after, the Firebird project (http://firebirdsql.org) took up the sources for version 6 and continued the
development on their own (from: http://en.wikipedia.org/wiki/Interbase).

21

decided to stop development as it seemed to be "feature complete" in 2001. Why invest more time

into a product if you are already the market leader?

Well, the community thought that there was a lot of room for improvements and after many

development cycles they released the final version of the Firefox browser in November 2004, which

was based on the original sources of Netscape's Communicator. Since then, it continuously gained

more market share (more than 10% according to several web statistics54), but moreover, it made the

market leader Microsoft resume the development of Internet Explorer in 2005.

In return, Netscape uses the sources as base for their Netscape browser suite. This is still given

away for free, but no longer developed in-house, therefore it costs Netscape almost nothing. By

applying customizations to the software, they are able to bind the user tighter to their Internet portal,

which marks their new real business.

Now, what I wanted to explain with this example is the following: the Mozilla Corporation, the

company behind Firefox, is of course far from being as capitalized as Microsoft, but they could create

and successfully introduce a product into a market which many people have said is saturated.

Does anybody believe this would have been possible if the product would have been

developed closed-source? Simply put, no. The huge community that Mozilla has and which was

needed for this task could not be replaced by paid manpower from a startup company. And even if it

was replaced, the final product would have cost hundreds, if not thousands of Euros55. This especially

applies to Netscape, which would not be able to support its portal business with a customized

software, if they would still have to pay for the development of this "tool", while their business

orientation has completely shifted.

54 The statistics differ quite a bit, generally more technically oriented websites have even a higher amount of users
browsing with Firefox (up to 40%) than general purpose websites.

55 The startup company would always lose against a competitor, which "sponsors" the development by his other
activities, allowing him to give away his product for free.

22

 2 Version Control

In chapter 1.3.1, Version Control was one of the issues which were needed for organizing distributed

development in Open Source projects. It may not be clear yet why a specific software is really needed

for this task. In fact, it is assumed that most development, especially closed-source development, is

still done without taking Version Control into account at all (obviously there are no clear figures).

The previously mentioned Linux Kernel project, and in particular Linus Torvalds, refused to

use any kind of software for Version Control until 2002, due to the fact that there was no such

software available which would have supported the way he and the other kernel developers

engineered the kernel56.

Manual Version Control should not be taken into account anymore as of today. A VC tool should be

something which has minimal effect on the way a developer works; the tool just should make all the

complicated work in the background, so a developer can simply concentrate on his main task: develop

software.

However, the problem seems to be that nobody is teaching computer science students in university the

use of Version Control, and if they finish their studies and enter the workforce, the employers often

do not do that either [Sink2004]. So, many people just do not know what problems could be addressed

by using Version Control and thus make the development a lot easier.

The following list shows some of the main benefits, but since Version Control systems vary greatly

on the implementation side, it cannot be guaranteed that all points are equally available or possible for

all systems:

56 Patches for the Linux source code were sent to Torvalds by email and he then decided if he included the patch in the
mainline kernel or not. As the Linux project grew bigger, this kind of "handish" Version Control was no longer
suitable, because Torvalds became the "bottle-neck" in the process of accepting patches from other developers.
Between 2002 and 2005 the commercial solution BitKeeper (http://www.bitkeeper.com) displaced the original
procedure, after an initial call from BitMover's CEO Larry McVoy, the company behind BitKeeper
(http://lwn.net/1999/features/BitKeeper.php3). BitKeeper seem to fit Torvald's needs perfectly, since it enabled
multiple repositories (distributed model), but in April 2005 BitMover dropped their license of the free version,
effectively only allowing a few major projects and developer to continue the use of their product . Torvalds looked
for a free alternative of BitKeeper, and since he could not find any good, he decided to write his own Source Control
software and called it git (http://www.kernel.org/pub/software/scm/git/). git completly replaced BitKeeper very fast
and released its first stable version in December 2005. Junio Hamano is the new maintainer of git today.

23

1. One Central Place for all the Code

Like a file server, a Version Control system offers a place where all the files of your projects reside

and are accessible for all team members. Ideally, this place can be reached through VPN'sG and

proxiesG, so distributed development is made easier.

2. History & People Tracking

With Version Control, one has the possibility to look back on older versions of a software, revert

changes that have once be made and identify each line of code by author.

3. Management of different Development Lines

If one needs to manage different lines of development, e.g. different product versions or versions

for different operating systems, a Version Control system organizes these different lines for the

developers, and allows them to mergeG code parts from one line to another (e.g. if a bug has been

fixed which exists in several "versions").

4. Parallel Development

Many Version Control systems support parallel development. This means that two or more

developers can work on the same code at the same time without waiting for the others to finish

first. Again, changes are later merged together (mostly) automatically by the system with only

minimal action by the developers.

5. Low Network Usage And Small File Repositories

Most Version Control systems do not send the complete files over the network, but only deltasG,

which are then used to reconstruct the particular version at the client's side. Deltas have been

possible for text files almost since the beginning of Version Control, recently newer VC tools

provide delta handling also for binary files. This saves bandwidth and makes the work with such

systems faster if one deals with many and / or large files of several megabytes.

Furthermore, new versions are also only stored as deltas of previous versions in the VC

repositoryG, so the back end is not bloated up by many file versions compared to normal file

servers.

Besides all these benefits, Version Control is also a necessary part to achieve ISO 9000G

conformance, especially for (document) change tracking and auditing procedures. If a company likes

to get certified e.g. after ISO 9001:2000, there is no way of getting around VC.

There are many solutions available for Version Control, both proprietary and Open Source. This

24

section will concentrate on the most popular Open Source solutions, though, and will give no further

references to strictly proprietary solutions like Perforce or Visual SourceSafe. Even if one

concentrates only on Free Software, the information provided in the next chapters probably are not

applicable on all available systems, since there are several dozens alone for GNU / Linux.

Furthermore, Version Control has many names, such as Revision Control, Source Control or

Document Control; sometimes it is even called (Software) Configuration Management ([S]CM)

[Negulescu2003]. There have to be made a few distinctions though, since especially SCM covers

more than Version Control alone. The following chapter presents a classification of Version Control.

 2.1 Classification

Reidar Conradi and Bernhard Westfechtel, both long-standing researchers in the field of Software

Configuration Management (SCM), classify the tasks of SCM into two main disciplines in their work

"Version Models for Software Configuration Management" [Conradi1996]:

1. Management Support

In this discipline SCM is concerned with product and component identification as well as

controlling of product changes, e.g. to enable strict procedures for audit, review and status

accounting.

2. Development Support

"SCM provides functions which assist developers in performing coordinated changes to software

products", such as helping them to accurately record "the composition of versioned software

products", maintain "consistency between inter-dependent components", reconstruct "previously

recorded software configurations", build "derived objectsG" from the source and finally construct

"new configurations based on the description of their properties." [Conradi1996]

Conradi's and Westfechtel's closer examination aims the second discipline, where SCM is mainly

considered a development support discipline. They do not use the term "Version Control" explicitly,

but rather talk of Version Models, which "[define] the objects to be versioned, version identification

and constructing of new versions"57. I will have a closer look at some of their concepts in chapter 2.3.

57 [Conradi1996], page 3

25

However, to get an easier introduction of what SCM and in particular VC is about, I am applying the

developer perspective even more and follow the classification by [Asklund2002]: here, the seven

most important aspects of SCM are:

Many Version Control tools can do more than just pure version control. They often also support

Workspace Management, Concurrency Control, some even implement a fully transparent

Configuration Selection, like ICE (Incremental Configuration Environment), which implements the

concept of Version Sets described by Andreas Zeller58. Other aspects like Change Management is the

subject of issue tracking software like the previously mentioned BugZilla or projecting software like

dotProject59 and others. Popular tools for Build and Release Management are make60 or its Java-

complement ant61.

Still, there is no single Open Source tool for all SCM needs available, and unfortunately there are not

even clear standards or interfaces defined which allow easy connectivity between these different

tools, or even between different Version Control software62.

58 http://www.infosun.fmi.uni-passau.de/st/papers/zeller-phd/zeller-phd.pdf
59 http://dotproject.net
60 http://www.gnu.org/software/make/
61 http://ant.apache.org
62 In 1999, Perforce introduced with RevML (http://public.perforce.com/public/revml/index.html) an open XML dialect

which primarily serves the purpose of giving an data interchange format between different VC software. This format
does not seem to be heavily used though, probably because of performance reasons.

26

Drawing 4: Seven aspects of Software Configuration Management - source: own drawing, after [Asklund2002]

Version Control

Storage and Retrieval of different
versions and variants of files, as
well as the comparison of those

Build Management

Automatic and incremental
generation of the software

from the source files

Configuration Selection

Selection of particular revisions
or modules to create a

consistent software version

Workspace Management

Giving users transparent
access to all versioned files

while keeping distinct workspaces
from several users separated

Concurrency Control

Management of simoultanous
access by several users and
synchronisation of their work

Change Management

Management supporting
funcionality which allows

issue tracking and
implementation progress

Release Management

Identification, Organization and
Packaging of all documents and assets

into one release

 2.2 History

The first system for Version Control was the Source Code Control System (SCCS) created in the early

1970's by Marc J. Rochkind at the AT&T Bell Labs. It was proprietary software which was shipped

with some Unix distributions of AT&T. SCCS was built directly for developers and allowed multiple

users to work on the same system63. A GNU implementation of SCCS was soon created and called

CSSC (Compatibly Stupid Source Control)64 - its main use has been the conversion of SCCS

repositories to newer repository formats like CVS or Subversion, though.

The Revision Control System (RCS)65, which was implemented by Walter F. Tichy in 1982

during his time at the Department of Computer Science at Purdue University, soon replaced SCCS. It

is completly file-based and uses the GNU program diff to create deltas, which are then stored in a

special file format. In 1991, RCS was licensed under the GNU GPL and adopted as GNU package66.

RCS has a more user-friendly approach than SCCS. The aim was that anybody, not only software

developers, could use the software to version their files.

In the mid-1980's Dick Grune, lecturer of Computer Science at the Vrije Universiteit in Amsterdam,

looked for a way to co-operate with his students, while they all had quite different schedules. He

created a set of shell scripts which worked on top of RCS and called it CVS67, Concurrent Versions

System, "for the obvious reason that it allowed us to commit versions independently."68 Later, this

functionality (lock-less Version Control) would make CVS one of the most important software

innovations of the year 198669. The other main achievement of CVS is its network capabilities.

Beginning in 1989 Brian Berliner took the sources from Grune and reimplemented them in the

C programming language. The CVS which we know today was born and started its success story in

the 90's. CVS is no longer dependent on RCS, but still uses its file format (with slight extensions).

From that time, several other Version Control systems popped up, many of which had the aim to

replace CVS because of its disabilities (no atomic commitsG, bad handling of binary files70, and more).

63 http://www.uvm.edu/~ashawley/rcs/manual/html/ch05s02.html and http://en.wikipedia.org/wiki/SCCS
64 http://cssc.sourceforge.net/index.shtml
65 http://www.gnu.org/software/rcs/rcs.html
66 http://www.uvm.edu/~ashawley/rcs/manual/html/ch05s02.html
67 http://ximbiot.com/cvs/wiki/index.php?title=Main_Page
68 http://www.cs.vu.nl/~dick/CVS.html#History
69 http://www.dwheeler.com/innovation/innovation.html
70 The original CVS stores and retrieves a binary file not through deltas like it does with a text file, but always as the

complete file. This leads to heavy network usage and big repository sizes when handling many binary files with this
system.

27

Some followed the common centralized model of CVS like CVSNT71, others introduced the newer

distributed model, like GNU Arch72 or monotone73 (chapter 2.3.3 explains both models in detail). The

official successor of CVS is Subversion, though. It uses the centralized model as well and introduces

many other features. I will have a closer look on Subversion in chapter 2.4.2.

 2.3 Architectures and Concepts

Many different approaches have been made over the last couple of years to improve or expand certain

functionality of the original Version Control systems like SCCS, RCS and CVS. Some of these

approaches will even demand a completely different point of view on Version Control in this regard.

The following chapter will present these approaches, gives examples of systems which implement

them and tries to examine in which use cases these tools are applicable.

 2.3.1 Product Space and Version Space

The versioned object base, which is all objects that are versionedG, consists of Product Space and

Version Space.

The Product Space "describes the structure of a software product without taking versioning into

account"74, in other words, it describes a single state of the product. Single software objects, such as

components, can have composition or dependency relationships to other objects within this structure.

A typical composition relationship would be "all files inside a directory", where each file has a

composition relationship with the directory it resides in. The composition graph is a single directed

graph which root node defines the software product.

Dependency relationships are orthogonal to composition relationships and denote dependencies

between different objects. E.g. when one thinks of a single source code file, the inclusion of header

files via #include denote the dependency of the current module to other modules.

Each software object has at least one object identifier. An external identifier is most likely

chosen by the developer (in file-based systems the full filename) and may not be unique, while the

internal, system-generated identifier is unique.

71 http://www.cvsnt.org
72 http://www.gnu.org/software/gnu-arch/
73 http://venge.net/monotone/
74 [Conradi1996], page 5

28

Software objects also may have different representations, for example an XML data structure may

have a textual representation (*.xml file) or a binary tree representation if the structure is already

parsed. One distinguishes here also between source elements and derived elements, where derived

elements can be created automatically from the source elements, and only the source elements are

subject to the Version Control system. Still, it is the task of the tool how to handle any kind of

representation, for example to find the differences between two versions. Textual differences on non-

structured sources (simple text) can be easily found and visualized by a general diff command, which

is implemented in most VC systems and works line-based. Using such a command on clearly

structured sources like XML fails, because the strict line-based approach does not take the structure,

the grammar in which the data are organized, into account.

Most of the available VC systems do not distinguish between different representations of software

objects or even apply custom commands based on their type. This task is left to external tools, which

need to be installed and configured separately.

The Version Model, the main aspect of the Version Space, "defines the items to be versioned, the

common properties shared by all versions of an item, and the deltas"75, which denote the differences

between them. According to [Perry2005], the Version Space can be distinguished between

a) The Logical Version Space

This space consists of all possible versions (built out of revisionsG and variantsG of every versioned

object of the software). It is often not useful to take this space into account, since it contains many

incomplete, or even not working versions.

b) The Practical Version Space

This space consists of all committed versions. One can assume that the developer has assured that

this version is complete and working before he / she added it.

Depending on the Version Control tool it might or might not be possible to retrieve all logical,

possible versions, but only certain, previously added version sets. This has the advantage that

software objects such as files are not mixed between different versions in a checked out copy and

therefore do not create a not working version.

75 [Conradi1996], page 8

29

Furthermore, one distinguishs in the Version Space between extensional and intensional versioning.

Extensional versioning means that the versioned item is a container for a sequence of revisions in the

back end of the VC system. Each single revision is explicit, which means that it was created and

checked out before, and has a unique number assigned to it. This versioning scheme is implemented

in the most VC tools.

Intensional versioning identifies a valid version by a variety of attributes on each versioned file. For

example, in a software project there could be developed a GUI component, which has specific

revisions for one operating system like Microsoft Windows and another, like Unix / Linux. Another

component could be a database, where Oracle and IBM DB2 are supported. To select a valid working

version, a condition is created, such as "give me the GUI component for Microsoft Windows". This is

a similar approach as the preprocessor directives of the programming language C, only that it is

language independent. Of course the Logical Version Space is much larger here, since many possible

versions make no sense or do not work at all (e.g. selecting a database which is not available on a

certain platform). The only system which is known to implement this type of versioning is the

previously mentioned ICE, unfortunately this system is no longer available.

 2.3.2 Database vs File System based Repository

Many Versioning Systems store each file as a single file in the back end repository. The folder

structure of the versioned software is then mapped one by one to the folder structure in the back end.

Examples for those systems are all tools which are based on RCS and the RCS file format76, e.g. RCS

obviously, CVS and CVSNT. Another system which uses a file system approach, which is different

from RCS though, is git. In the following part the RCS file format is discussed.

In the RCS file format single revisions are stored as deltas from the base, the initial revision. Each one

gets its own decimal number (2*n digits). BranchesG, also called offsprings, are labeled internally by

adding another decimal number to the original revision number from which the branch was created

(2*n+1 digits). The RCS format is therefore an example of extensional versioning discussed in the

previous chapter.

Merging changes between branches happens simply by applying the changes (all deltas) for each file

between two tags or two revisions, from one branch to the other (in the following drawing merge

points are visualized by red arrows):

76 RCS files are recognizable by the additional ",v" at the end of the particular filename, e.g. "file.ext,v".

30

A graph of an RCS file therefore has a two-level organization which looks like a directed acyclic

graph (DAG), though it differs from it in two things: there is only one root element (revision 1.1) and

the applied merges are not joins; a branch will exist further even after it has been merged into another.

Branch points mark offspring relationships (green arrows), while the sequential improvement within a

branch is created by successor relationships (black arrows).

HEADG, often also referred to as TrunkG, denotes the main development line for the file and is a

special branch. Implementation-wise, branches are special tagsG which are "tacked" to the revision for

which the branch was created. They are also called "sticky" tags. Subsequent revisions on the branch

(deltas to previous revisions) are then identified by their revision number.

The RCS file format is specified77, so all systems using RCS files in the back end should be

interchangeable. However, this is not true for all, since the format evolved slightly over the time. For

77 http://www.die.net/doc/linux/man/man5/rcsfile.5.html

31

Drawing 5: RCS version graph - source: own drawing

HEAD
Branch

„foo_branch“
1.2.0

Branch
„bar_branch“

1.2.2

Branch
„baz_branch“

1.2.2.3.0

1.1

1.2

1.3

1.4

1.2.2.1

1.2.2.2

1.2.2.3

1.2.2.4 1.2.2.3.0.1

1.2.0.1

1.2.0.2

source_file.ext,v

example, CVSNT adds additional fields to the original format, which renders it useless for CVS and

RCS. Therefore an upgrade path might only be from RCS over CVS to CVSNT, not vice versa.

The main drawbacks of file system based approaches, and in particular of the RCS format, is that they

cannot be used to version directories or meta data, make problems when a file is renamed78 and solely

scale with the underlying file system in terms of performance. Real time statistical analyzes are hardly

possible this way.

Another problem special to the RCS format is that since only single files are versioned, the only way

to get a working set of multiple files is by applying tags on them. If a file was not tagged because the

developer forgot to do so, the version is broken.

The other approach is using a relational or XML database (DB) back end for the repository. This

approach is used by many different VC tools, for example monotone or Subversion, though there has

no standard format evolved yet. An upgrade path from other, mostly file-based formats to the newer

systems is provided by some tools, though only popular systems like CVS are supported here and

there is no way going back to the old format in many cases. Switching the used Version Control tool

amongst a critical development phase is never a good idea, since there is the risk of loosing the

history or even the current data if another tool does not what it should.

The main advantages of a database back end are the speed of accessing repository contents and to

have a separate layer to which other tools can connect to. Also, the database back end could be

distributed on other physical machines for performance reasons and thus scale with the number of

clients. Obviously there are still more problems to solve here, like the ability to make hot backups or

run multiple (failure) instances which need to synchronize between each other for really large teams.

 2.3.3 Centralized vs Distributed Version Control

The question of what distinguishes the centralized from the distributed approach has not so much to

do with the actual way networking is done between each participant, but more with the manner the

project organization happens inside the team. I will now take a closer look at both approaches and try

to outline advantages and disadvantages.

78 CVSNT includes experimental rename support in newer versions, the main problem is however that the RCS format
uses the file's name/ path as identifier, thus when a file is renamed, the file has to be identified through another
mechanism. What makes it this complicated is that it must not destroy older versions in the repository by renaming
files in current version.

32

In VC tools which follow a centralized approach (the most popular here is probably CVS), there

exists a single server which holds the code repository, the versioned object base. This single server

can be accessed by multiple clients that retrieve their local copy via a checkoutG over the network. The

checked-out files then resides in the developer's sandboxG, or working copy, in which he can make

local changes. As soon as he finishes his work he commitsG his changes back to the repository and

shares them with the other developers79. The following drawing illustrates this process:

The biggest advantage of this approach, having one central development repository which contains

the mainline of the development, is also a disadvantage: if the repository server fails for some reason

or the network is down, the developers cannot share their code with other users any longer, so

distributed development stops. Also, most known centralized repository approaches cannot be

mirrored, so the number of clients which are able to do concurrent checkouts, commits and other

functions, directly scales with the underlying hardware and network connection of the server machine.

Some Version Control systems like CVSNT tend to use big amounts of RAM to build files from the

saved deltas e.g. for a checkout. Especially if one handles binary files with these systems, up to twice

79 Other developers do not retrieve the changes automatically; instead they need to trigger an update action which is
similar to the checkout action, but only transfers the differences between the new version and the version in the
user's sandbox to the user. If updates would be automatically be pushed into other user's sandboxes they could create
conflictsG with local changes if the work happens concurrently (which is the case in most VC tools).

33

Drawing 6: Centralized Version Control - source: own drawing

Client 1
(Sandbox)

Server
(Repository)

Client 2
(Sandbox 2)

Client X
(Sandbox X)

com
m

it
checkout

com
m

it

che
ckout

co
m

m
it

ch
eck

ou
t

as much memory as the original file size is, may be needed to perform these actions.

Another possible problem with the centralized approach can especially be found in large development

teams, and even more in big Open Source projects. Here it is not suitable to give every developer

write access to the code base, since thoughtless or inexperienced users may commit broken code

accidentally or even intensional. Still, OS projects especially are willing to accept patches for bugs or

improvements and also like to lower the barrier of how code can be contributed by 3rd parties, thus

attracting more developers to work for the project. The Apache Project solved this issue by giving a

group of "trusted" people write access, where each of them is responsible for a certain aspect / module

of the project. Those "module owners" then receive and examine 3rd party patches, and then decide if

they take them into the main repository or reject the submission. However, the way these patches are

submitted is not generalized in any way and mostly happens via email (for example in the Linux

Kernel Project). A patch is in this case always uncoupled from the original code base, version and

context and the individual developer needs to take care how it can be included into the mainline

development.

The distributed approach solves this problem. Here every developer can have his own repository

based on the original one. One could speak of a branch or even a "fork", a split of the project base

which is now under the direction of the user. This leads to the fact that multiple HEAD's of the project

exist, since there is (technically) no central server which always contains the most recent and up-to-

date version of the software. Instead each user has its very own local repository, from which he

checks out his sandbox and also commits changes back to. If he likes to share his changes with other

users or likes to retrieve other user's changes, he synchronizes his local repository with a remote one.

The next drawing illustrates the procedure for the Version Control software monotone:

34

The biggest issue when using Distributed Version Control is integration, however. The hierarchy in

which changes are merged "upwards" (like in a pyramid) is often not mapped by the tool.

The Linux Kernel project and their tool git have introduced a signing process: external

contributions are merged into local repositories by a group of trusted people first, of which everybody

digitally signs the submission with his / her very own name. The more people do sign off a

contribution, the more the contribution gets trusted and therefore will later be included in the official

repository of the branch owners (e.g. this is Linus Torvalds for Kernel version 2.6).

However, there is some general criticism about Distributed Version Control. Greg Hudson, a

free software developer, outlined four limitations of this „pyramid“ approach in "Why Bitkeeper Isn't

Right For Free Software"80 amongst other things81:

1. Limited Development Speed

Hudson refers here to the problem that only the one branch owner on top of the pyramid examines

and merges a huge set of patches and "even with the best tools, a single integrator can only

achieve a certain level of throughput."82

80 BitKeeper is a commercial Version Control Tool which works after the distributed approach (see footnote 56 on
page 23 for more information)

81 http://web.mit.edu/ghudson/thoughts/bitkeeper.whynot, last changed: March 2003
82 Line 53f in http://web.mit.edu/ghudson/thoughts/bitkeeper.whynot

35

Drawing 7: Distributed Version Control: architecture of monotone - source: own drawing

Developer 2

Local/
Remote
Repo
sitory

Sandbox
checkout
update
commit

Developer 1

Local/
Remote
Repo
sitory

Sandbox
checkout
update
commit

Developer X

Local/
Remote
Repo
sitory

Sandbox
checkout
update
commit

Pull, Sync, Push

2. Single Point of Failure

Furthermore, if this single integrator fails for some reason, e.g. because he "suffers an accident,

goes on vacation, or simply burns out, development is disrupted until a new integrator can be

selected and comes up to speed."83

3. Opinionated Maintainers

One maintainer / branch owner decides what goes into the mainline development and what not,

and according to Hudson "it is a rare individual who is always right."84

4. Limited Filtering

Only a few people do review (and actually have the right to accept or reject) an external

contribution at a lower level of the pyramid scheme, and such a review might be "cursory or

nonexistent"85 depending on if they are under heavy workload or even do their work biased and not

open-minded.

For Hudson, these four limitations lead to „slow and unpredictable release schedules, poor stability

of release branches, and a lack of important standards“86, which is primarily targeted against the

Linux Kernel project in first instance, but what could popup in any similar maintained project as well.

There are commercial solutions available that try to take the best of the two approaches, namely

WANdisco87, which is available for CVS, CVSNT and Subversion. They add distributed („multi-site“)

features to these VC tools that allow the synchronization of different server repositories which may

reside anywhere in the world; in case of WANdisco this even happens in real-time and without a

central transaction manager (which would be a single point of failure). However, all these tools can

only assist, but not replace a good project management.

83 Line 57ff in http://web.mit.edu/ghudson/thoughts/bitkeeper.whynot
84 Line 61f in http://web.mit.edu/ghudson/thoughts/bitkeeper.whynot
85 Line 69 in http://web.mit.edu/ghudson/thoughts/bitkeeper.whynot
86 Line 74ff in http://web.mit.edu/ghudson/thoughts/bitkeeper.whynot
87 http://www.wandisco.com

36

 2.4 Tool Shootout – Feature Comparison of Popular OS Versioning
Software

This section will present three Open Source Version Control tools: CVS and its successor CVSNT,

Subversion and monotone. Each system has its up- and downsides. To classify important functionality

which every modern Versioning System should be capable of and support, I will use parts of the

taxonomy introduced by [Fish2006] and expand it where needed. This taxonomy will be used in the

review for every system. Chapter 2.4.4 concludes this section by giving a summary and a final feature

matrix containing all gathered aspects.

a) Technical Aspects:

• Support for Atomic Operations

Are operations, such as commit, atomic to the repository or do unfinished operations leave the

repository in an intermediate state?

• File and Directory Renaming and Copying

Is it possible to rename (move) and copy files and directories while keeping the history of

these objects intact?

• Replication Support

Is the system capable of replicating and also synchronizing repositories which have been

replicated?

• Permissions on the Repository

How fine-grained can access be given to the repository, if permission settings are possible at

all?

• History Tracking

Does the system offer a way to track changes, by file or even by line?

• Meta Data Support

Is it possible to version additional meta data for each versioned object?

37

b) Status and Deployment

• Activity

Is the software actively developed? Do other companies push the development?

• Deployment

For what platforms does the software exist? Is it easy to deploy it? Are there upgrade paths

from other VC software?

• Networking

How does the system integrate into an existing networking infrastructure? Can the traffic be

secured?

• Ease of Use

Is the software through its command set easy to use? Do graphical clients exist, and if yes, for

which platforms are they available?

c) Documentation and Support

• Documentation and Help

How well is the documentation on the system maintained? Do other help resources exist?

• Professional Support

Is it possible to get professional (paid) support on the system? What is offered and how much

does it cost?

 2.4.1 Matured and Well-known: CVS / CVSNT

CVS is the most known Version Control system available today; the latest stable version is 1.11.21. It

is still the de facto standard when it comes to Version Control, and many other tools try to be as

compatible as possible with the offered command set and operating methods of this tool. The history

of CVS has already been discussed in chapter 2.2, since this system has been an important part of the

overall history of Version Control. However, CVS is no longer actively developed in favor of its

successor Subversion. CVS is licensed under the terms of the GNU General Public License.

CVS uses the centralized approach, which means that there exists usually one repository which

is accessed by multiple clients. The network traffic is done by a proprietary, relatively insecure

protocol, but can be tunneledG over the SSH (Secure SHell) protocol which allows different types of

encryption.

38

The back end repository uses files to store versions of objects (the file format is based on the

previously discussed RCS file format), obviously „objects“ are only files and not directories or meta

data in this case: there is no versioning support for these other objects in this system. This is also one

of the biggest problems with CVS, because the tool sees directories merely as paths in which

versioned files exist in a single state. Therefore, file renaming and moving is not possible since the

system is unable to store or reproduce the directory structure of a certain version.

The CVS client works on the checked-out version, called the sandbox. Since CVS works per

file (and each file gets its own revision number) it is not necessarily the case that all contained files

compose a valid working version. It is possible to update to an invalid version by retrieving an older

revision of just a single file, or by selecting revisions by date, rather than by revision number. In the

latter case revisions of files are selected which may be completely incompatible because they mark

different states of development.

As compensation CVS introduces the concept of tags to mark different revisions of different files as

coherent, still, such a tag is never automatically set on all files in the repository, but only on the

selected ones. Special branch tags allow offsprings from certain versions for parallel development.

The symbolic tag HEAD marks the mainline development and is automatically set in all files of the

repository.

Since CVS does not support atomic commits, it is not very failsafe. If a repository action is canceled

before it finishes, the repository contains partially committed and uncommitted changes. Obviously

this does not happen that often, the easiest way to fix such broken commits is to update and then

commit the missing files again.

Permissions can be set only repository-wide. A user has either no rights, read rights or read / write

rights. There is no way of setting permissions on certain modules or even branches. Altering

permissions and other repository settings is accomplished by a special, versioned directory called

CVSROOT which is automatically established when a new repository is created. This directory

contains several files which can be used to administrate the repository and which are automatically

checked out in the repository once they have been committed88.

CVS is used in many places and many developers are familiar with it, therefore there are a lot of help

ressources available. The documentation on the system is very good as well, obviously one should

consult other resources before one starts to learn the basics, otherwise one gets confused with the used

terminology if it is the first time one deals with such a system. Commercial support can be retrieved

88 It is out of scope to explain all administrative files; the interested reader can find more information here:
http://ximbiot.com/cvs/manual/cvs-1.11.21/cvs_18.html#SEC158

39

by Ximbiot89, and starts at approx. $18.000 / year, which is limited to a maximum of 20 support issues

and 12 users. There are no additional warranties supplied by this contract, though, so the license terms

of CVS are not touched.

The original CVS is natively only available on Unix platforms (Linux, BSD, MacOS X) and is

normally already included in most Linux distributions as well. For the Windows platform CVSNT has

emerged90.

CVSNT is a fork of the original code base of CVS and is actively developed by Tony Hoyle since 1999

as an Open Source project91. I am reviewing version 2.5.03 build 2151 of CVSNT, like CVS also

released under the terms of the GNU General Public License.

The primary objective of this project was to bring CVS to the Windows platform while providing the

highest possible compatibility to the older system. CVSNT however was also extended to „fix“ some

problems CVS had, thus it was not only released for Windows, but for a variety of other platforms

(including Linux) as well. Today it supports delta versioning of binary files (while CVS stores the

complete file on each commit), includes ACLs (Access Control Lists) to apply fine-grained

permissions on repository files, is fully Unicode-aware, introduces smart branch points92, which ease

the use of branches in CVS a lot, integrates as system service under Windows, and many other

functions93. Still, even CVSNT has some limitations because it is still based on CVS: atomic commits

are not possible, replication has to be accomplished with external tools, renaming support is at beta-

stage, and the versioning of meta data or even directories is not possible at all as of today.

One can get professional support from March Hare Software Ltd94. March Hare sells licenses

and services for their product CVS Suite, which is based on CVSNT, and adds additional features to it

(integration into 3rd party issue tracking, workspace management, auditing software and more).

Licenses for 10 concurrent users including one year telephone support, upgrades, prioritized feature

requests and security alerts start from about 2900 Euro95.

89 http://ximbiot.com/CVS_support.html
90 One can use Cygwin (http://www.cygwin.com/) to run the original CVS as native application under Windows,

though the integration and speed is not the same as of CVSNT.
91 http://cvsnt.org/wiki/HistoryPage
92 The original CVS needed several normal tags applied on different branches to know which changes should be

merged into another branch and which not. Particular for subsequent merges this was very difficult, since one could
get easily conflicts by merging changes into another branch which have already been applied there earlier. CVSNT
sets internal tags, branchpoints, automatically when a merge happens, and therefore recognizes on the next merge
what should be applied and what is already applied.

93 http://cvsnt.org/wiki/CvsntAdvantages
94 http://www.march-hare.com
95 http://march-hare.com/cvsnt/techspecs/en.asp

40

To ease the daily use with the Version Control system and hide the sometimes complex command set

from the user, there is a variety of Graphical User Interfaces (GUIs) available for many different

platforms. IDEs like the previously mentioned Eclipse even include native CVS support without the

need of external binaries. A particular well-designed multi-platform GUI is LinCVS96, which exists in

a free version and a "XXL" version with additional features. The latter version is free for non-

commercial use, otherwise the pricing starts at about 79 Euro per license.

96 http://lincvs.com/

41

Illustration 4: Main window of LinCVS XXL on Windows - source: http://lincvs.com/shots/shot4.png

The free version of CVSNT is used and shipped with most Windows CVS clients, because it is possible

to contact older CVS and newer CVSNT servers with the same binary. Another very popular CVS /

CVSNT client is TortoiseCVS97. TortoiseCVS acts as Windows Explorer shell extension, which

provides the most needed CVS commands on right-click. This program is Open Source as well, but

unfortunately only available for Microsoft Windows.

In the end it is no longer recommended to use the original CVS for new development, since there are

really better alternatives available. If one likes to stick with the way CVS "works", one could upgrade

to CVSNT98 and receive a variety of functionality improvements as well as the option of professional

support. If meta data and rename support is immanent, one of the other two tools reviewed here may

be more suitable.

97 http://www.tortoisecvs.org
98 Since CVSNT still uses the CVS / RCS file format, upgrading the repository while containing the history is an easy

task. However, there is no downgrade path from CVSNT back to CVS. See chapter 2.3.2 for more information about
the RCS file format.

42

Illustration 5: TortoiseCVS Explorer extension - source: http://www.tortoisecvs.org/screenshot1.png

 2.4.2 The New Kid On The Block: Subversion

With the obvious flaws that CVS had, many people sought alternatives over the years. In 2000

CollabNet, Inc.99 started looking around for developers which would be able to write a replacement

for CVS, which they could use in their collaboration software CollabNet Enterprise Edition100. They

came in contact with Karl Fogel, the author of Open Source Development with CVS (Coriolis, 1999),

who already discussed with his friend Jim Blandy the characteristics for a new Version Control

system they called Subversion (SVN). Fogel agreed to work for CollabNet and hired a few other

people for the task. The design goal was to match the features and "feel" of CVS while not making the

same failures. SVN therefore also uses the centralized model explained above.

After Subversion became self-hosting in August 2001 (that means the code of Subversion

could now be managed by Subversion itself), the final version 1.0 was released in February 2004

licensed under an Open Source license101. The following review tests Subversion 1.2.3 released in

May 2005.

Subversion has a very similar command set like CVS. Basic actions include checkout, add, log,

remove, update and commit which are known from the latter tool. This should make it fairly easy for

somebody who is familiar with CVS to understand Subversion as well.

However, the tool is distinct from CVS in many other aspects. One point is that Subversion

uses global revision numbers instead of per-file revision numbers. A revision therefore records the

state of the whole repository tree, not just of a single file. One does not say "give me revision 115 of

file foo.c", but rather "give me file foo.c as it appears in revision 115". Branching as we know it from

CVS does not work this way, since there are no revisions like "115.1". Instead, Subversion branches

are copies of a subtree which are saved in another Subversion directory, so branching is often called

"copying" in this regard. These copies are cheap, because Subversion does not really copy all contents

somewhere else, but rather links to the original contents. If changes are applied on a copy, only the

differences (deltas) to this linked original contents are saved.

99 http://www.collab.net
100 http://svnbook.red-bean.com/nightly/en/svn-book.html#svn.intro.history
101 Apache/BSD-style, while retaining the rights on the use of the name of the product as well as the name "Tigris",

which is used as development platform: http://subversion.tigris.org/project_license.html

43

To manage branches easier, a common repository layout has been evolved over the time, obviously

one is not bound to use that if one works with Subversion:

• project/trunk - Contains the mainline development

• project/branches - Contains copied subtrees of trunk

• project/tags - Another branch directory, which is however never changed

(useful for recording "stable" versions)

Another point in which Subversion differs from CVS is its network capabilities, which is far the best

feature of SVN. Users can connect to SVN's svnserve server process (optionally secured via an SSH

tunnel) which uses a proprietary protocol, use the file:// protocol to connect to a local repository, or

use WebDAVG via HTTPG or HTTPS (SSLG-secured HTTP) to connect to Subversion over the Internet.

In the latter case Subversion is installed as a module in the popular Apache Web Server and can use its

full facilities for access restrictions. Another advantage of this approach is that Subversion

repositories can be reached easily even by restrictive configured networks and can even be mounted

as network shares in many operating systems. If one configures so-called auto-versioning102 it is even

possible to save new revisions without the use of a native SVN client.

Technically Subversion is very up to date. It supports atomic commits, has full rename support

(implemented as "copy and drop"), allows the setting of fine-grained rights on a repository

(configurable through svnserve.conf file or through the authz_svn_module available in Apache), and

also offers meta data support. These meta data are called properties in SVN and are versioned as like

the versioned object itself. The value of a property can be arbitrary data - not only text information.

The SVN manual gives the example of an image repository where each image can get a thumbnail

image assigned as a property103. In fact, properties are used by Subversion itself for special purposes

like identifying the mime type of the file (svn:mime-type), or if it is executable (svn:executable). All

these system properties are prefixed with a "svn:".

The repository back end in Subversion was database-driven (using Berkeley DB, BDB) until version

1.1, but since 1.1 a new, default file-based format called FSFS has been used. The new format has

some advantages over the previous DB-format, the most important here is probably that the format is

platform independent. It also allows smaller repository sizes, works faster with directories containing

many files and supports backups via standard backup software. However, there are certain downsides

102 A full explanation how to enable Autoversioning in SVN 1.2.3 can be found under
http://thomaskeller.biz/work/thesis/SVN_Autoversioning-HOWTO.txt

103 http://svnbook.red-bean.com/nightly/en/svn-book.html#svn.advanced.props

44

with this format, as the code base for the new format is less mature and a little slower in certain

areas104. Therefore, one can still use BDB as data back end when this is explicitly given as a parameter

while creating the repository.

Speaking of setting up Subversion, one has to mention that this software is very easy to deploy. An

option to import CVS repository files is available, though it is not possible to import the newer

CVSNT file format with this option. The documentation is very good; the official book "Version

Control with Subversion", published by O'Reilly, is licensed under Creative Commons (a free license)

and is constantly updated with every new version105. It has been written by Ben Collins-Sussman,

Brian W. Fitzpatrick and C. Michael Pilato, three active developers of Subversion. The community is

also very active, mailing lists and more are available through the project's website106. A variety of

graphical user interfaces support SVN - apart from every WebDAV-capable program there exists

support for Subversion's native protocol in TortoiseSVN107, a Windows Explorer shell extension

similar to the previously mentioned TortoiseCVS, and RapidSVN108, a client available for Windows

and Unix platforms, to name only a few.

Commercial support is offered by CollabNet, the primary sponsor of Subversion. There are three

support plans available, "Silver", "Gold" and "Platinum", each with a certain level of

responsiveness109. Unfortunately there are no prices mentioned on CollabNet's website for the

different services, so one has to file an official request first to get more detailed information.

 2.4.3 For Highly Distributed Development: monotone

The last system I like to review here is monotone110, which implements the distributed versioning

model, in other words it implements a true P2PG approach. monotone is not quite ready for

deployment and use in a production environment; still the tested version 0.26pre2 looks very

promising. There are other Open Source VC tools like git or GNU arch, which also work

decentralized, but both are hard to learn and lack on a good implementation for Microsoft Windows

platforms. monotone is developed since 2003 by Graydon Hoare and others under the terms of the

GNU General Public License.

104 The full list of pro's and con's on both formats can be found under http://svn.collab.net/repos/svn/trunk/notes/fsfs
105 The official startpage of the online version is http://svnbook.red-bean.com/
106 http://subversion.tigris.org
107 http://tortoisesvn.tigris.org/
108 http://rapidsvn.tigris.org
109 http://www.collab.net/subversion/index.xhtml and http://www.collab.net/support/comparison.html
(Comparison of different support plans)
110 http://venge.net/monotone

45

In monotone everything is about hashesG. The system uses the cryptographic SHA-1 function (Secure

Hash Algorithm utilizing 160 bits) to create checksums of the contents of any versioned object. The

resulting 40 bytes long string is then used as identification for one revision of a certain file. Each

commit creates a new repository version111; this is because the repository version is determined by the

SHA-1 hash of the manifest, an internal data structure which lists all versioned objects and their

SHA-1 hashes. If one of these hashes changes, the hash of the manifest changes as well, and a new

version is created. Since it is unhandy to deal with 40 bytes long strings monotone offers a smart UI

which "guesses" the complete revision identifier even if only a few characters are given.

The system implements a three-way architecture, consisting of a local repository, a local

working copy (workspace) and remote repositories (see Drawing 7 on page 35). The repositories are

single files which contain the back end for the underlying SQLite database system monotone uses.

They are therefore easy to backup. Synchronization between different repositories happens via the

netsync protocol. The project got the port 4691 granted by IANA (Internet Assigned Numbers

Authority) for this purpose112. monotone uses the same program in client and server mode. To start a

server process it is enough to give the database and the branch(es) as parameters to the program:

monotone --db=foo.db serve "com.example.project.branch"

For globally unique branch names it is proposed to use the syntax

TLD.DOMAIN.PROJECT.BRANCH[.SUBBRANCH[...]]

which ensures that a branch is never used twice anywhere in the world. Though there is a discussion

going on whether this is really the best way113, monotone uses this java-package-style syntax for their

self-hosting project.

Meta data information is managed with certificates. A certificate consists of a key (the name of the

certificate), a value and the revision / file id to which this certificate is associated. monotone handles

all kinds of data (even system data like the revision's commit date, the log message, the author of the

commit, tags, branches, aso.) through this mechanism. To put in an amount of extra security each

certificate is signed by the user who issued it. This signature clearly identifies the user through the

common public / private key system known from PGP (Pretty Good Privacy) and others by adding

the cryptographic "checksum" of the certificate's data to the resulting certificate. By exchanging the

public part of the user's key, other people can check the validity of any data and therefore accept or

decline access from foreign sources if they have a local server running.

111 It is not possible to make commits to single files without changing the overall version.
112 "Monotone Network Protocol": http://www.iana.org/assignments/port-numbers
113 http://www.venge.net/monotone/wiki/BranchNamingConventions

46

monotone currently lacks of good graphical user interfaces. There are a couple of approaches, but

none has gone behind alpha state as of now. The community around the project is very active though,

and before monotone hits a stable version a GUI should be ready. The documentation is very nicely

organized, one can receive help through mailing lists, IRC (Internet Relay Chat), the wiki or the

online manual which covers all aspects thoroughly. Unfortunately no professional support is yet

available for the system.

In conclusion monotone is definitely worth a try, though it should not be used in production

environments. It runs therefore out of competition in the comparison.

 2.4.4 Feature Matrix

The following feature matrix summarizes the gathered results of the above reviewed Version Control

systems. Columns which do not contain textual descriptions have been applied a grade system, where

one star (*) means insufficient or bad, two stars (**) mean moderate or fair, and three stars (***)

mean very good or excellent. If no star is applied the feature or aspect is not available or does not

apply.

Subjects / Systems CVS / CVSNT Subversion monotone

Technical Aspects

Support for Atomic Operations No Yes Yes

File and Directory Renaming and Copying No / Partly Yes Yes

Replication Support No114 No115 Yes 116

Permissions on the Repository Partly117 / Yes Yes Yes

History Tracking Yes Yes Yes

Meta Data Support No Yes Yes

Status and Deployment

Activity -118 / *** *** ***

Deployment ** / *** *** ***

Networking * / **119 *** **120

Ease of Use *** *** *121

114 Replication support is offered by 3rd party tools like WANdisco. CVSNT 2.6/3.0 might offer built-in replication.
115 Replication support is offered by 3rd party tools like WANdisco for SVN.
116 This is by design, since in a decentralized environment there is no single server node, thus no single point of

failure.
117 It is possible to expand CVS with ACLs, while the ACL functionality is already built into CVSNT.
118 CVS is no longer actively developed further, though ximbiot cares about bugs of the original software.
119 Though CVSNT offers a variety of access protocols (including Kerberos authentication and SSPI support under

Windows), its rather hard to get connected in a restrictive environment, where only certain services are allowed.
There is no WebDAV support like in Subversion.

120 Since communication happens over a special port, this could be a problem in complex setups with Proxies and
Firewalls.

121 No graphical clients are available to date.

47

Subjects / Systems CVS / CVSNT Subversion monotone

Documentation and Support

Documentation and Help *** *** ***

Professional Support No / Yes Yes No

In the end its not easy to pick a clear winner, since both, CVSNT and Subversion, try to keep the

"feeling" of CVS, while removing the lacks of the original software. Subversion does that and starting

with a complete new code base, while CVSNT originally was thought as CVS fork for Windows, thus

still needs to care a lot about backwards compatibility to CVS.

monotone has a very nice approach and implementation, but is not quite ready for deployment

in production scenarios and offers no commercial support yet either, so its not our current scope.

Therefore Subversion is probably the best choice for a Version Control tool to date in a professional

environment.

 2.5 Best Practices for Version Control

Over the decades many people have used Version Control in their projects, and through this daily

usage many common practises have evolved. Of course this is slightly biased depending on the tool

one uses; since the centralized versioning model is the most wide-spread one, I will discuss only those

practices which can be applied with tools using this model here.

 2.5.1 Check-in Only What Is Really Needed

This has been mentioned already in the chapter about Product Space and Version Space. Derived

objects, such as C object files or other automatically created resources should not be included into the

repository. Only those files which are needed to build these derived objects are subject to Version

Control. The reason is simple: these binary components are often platform-dependent, so if another

user checks them out and works on a different platform, he cannot use them anyway, because he

needs to rebuild them. This overwrites the original files and marks them as changed, thus they could

be accidentally committed again, and now the original user has unusable files on his next update.

There are certain exceptions though, when it could be useful to include derived objects as

versioned objects. This could be for example test results from test runs, which should be kept together

with the project's files. Another example would be derived objects which take very long to be created

dynamically or do not change often, so it is useful to have them always available.

48

Almost all Version Control systems come with a technique to "hide" derived objects from a user's eye

by ignoring them. Normally there already exists a default configuration right from the start, so the

system "knows" of common derived objects and ignores these automatically. However, one can add

additional file patterns to the VC configuration to hide project-specific files which should not popup

as "unknown" and therefore would be possible to add to the repository.

 2.5.2 Commit regularly, in Small, Grouped Portions and only Working
Code

People who have never or only a little dealt with Version Control, tend to commit many files at once

when they start using VC tools. Most of the time, these commits happen before they stop working at

the end of the day. A comment, which should describe the actual changes is then applied to the whole

state of the module and is often unsuitable for most of the files, since it is written too "generic" or

does not even apply to every committed file. Often, many smaller changes are completely forgotten to

be mentioned if the change was done many hours ago.

The situation gets worse, if the user's comment is not very descriptive and basically tells nothing

about the changes made to single files. One could argue that reading the diff output every VC tool

offers should be enough to understand what has happened between two distinct versions, but the

practice proves that wrong: even if the code itself is well documented through comments; complex

functionality changes that span over several files cannot be examined properly by looking at a single

diff.

Moreover good comments make it easier for other developers to follow the development, even if they

do not currently work on a particular module. In concurrent development teams there are often

automatic email systems setup, which notify other developers on changes. These "commit emails"

then contain the comment of the commit as well as all changed files. A descriptive comment therefore

helps a lot to give others an overview what has changed.

Leaving the comments aside, another thing is very important if one works together with many other

developers. As long as you do not work on your own branch alone, you probably commit your code to

some mainline which other users use as well. What happens if your just committed code does not

work and produces errors? Suddenly the other developers can no longer build a valid version as soon

as they update their sandbox. Doing regular updates with the others developers work is immanent in

concurrent development, so broken code actually stops all concurrency immediately. A developer

thus should always make sure that the code he commits passed some basic testing on his local

machine.

49

In conclusion, what should all be considered when committing changes to a central repository?

• Do not describe the obvious things ("changed letter a to letter b"), since this could be really

examined by looking at the diff output. Instead, comment the reason behind and the

functioning of a change.

• Group files which belong together for a change.

• Commit regularly, because naturally you remember more of the actual changes if these

changes did not happened too long ago.

• "Do not break the tree" - Do not commit untested code which leaves other developers clueless

why their updated version does not work any longer. This stops concurrent development!

 2.5.3 Branch when Needed and Keep your Branch Up To date with the
Trunk

Branches are a good way to separate certain development lines from each other. There are several

reasons why one wants to branch from the mainline. The most popular reason is probably to separate

a "stable" version of the product from a "development" version. This could be important e.g. to

restrict access to certain areas of the project which should not be accessible by users which might

break something, to give them some kind of "playground".

Another reason is the ability to apply bug fixes on older versions which have been released to the

public. If there is only one line of development available, you cannot release an updated version of

your product if your sources already contain code parts of a newer version, which may not even run

stable.

Branches are in many VC systems nothing more than special marks on certain repository versions, so

it is cheap to create those. Like we have heard for example in Subversion branches are created by

simply copying the contents of one directory to another. While in the real world this would effectively

double the needed size on a file system, Subversion only applies links to the original versions and

stores the differences between those and the applied changes. So again, branches are cheap, and one

should just use them, because they make the life with Version Control much easier.

It has to be distinguished if a branch is created for forking the current development, or if the branch

might be merged back into the mainline (the Trunk) of the repository. In the latter case, one has to

make sure that both development lines do not drift too far away from each other, because this will

50

make a later merge almost impossible, or at least will create many conflicts122. A developer should

therefore merge new code from the mainline into his branch on a daily basis. This way he can

recognize possible conflicts early and act accordingly to resolve them.

 2.5.4 Do You Really Need to Lock it?

People migrating from Visual Source Safe, or another tool which uses file locks intensively, to a

system which supports concurrent development, often fall back into their old behavior pattern and

think they need to lock the items which they checkout.

At first one has to say that such a "checkout lock" would lock the whole module in tools which

support concurrency, so effectively no other developer would be able to work on the whole project!

There are possibilities to lock single files even in CVS (via the "edit" and "unedit" commands), but

this functionality is not used very much. Why should it be useful at all?

Secondly exclusive locks are more obstructive than helpful. Imagine you have a team of

developers and one of these developers accidentally forgets to "unlock" the code he last worked on?

Now of course you can ask him to do so, but what if he is not available at that moment, because he

does not sit in the same bureau, is not in the same city, maybe not even in the same country like you?

Your development stops immediately.

The fear of having to work without locks is mostly because people think it would create too much

conflicts. However, intelligent merge algorithms ensure that most concurrent edits on single files are

automatically resolved, and only those edits which concern the same line of code create a conflict.

Also, if one checks in the code regularly it is not that often that concurrent edits on the same file

happen at all.

Again, it is really not needed to acquire exclusive locks on source code "just to be safe". If you fear

that different edits may create too many conflicts a better approach would be to use branches.

122 This is especially true for the centralized model, while the developers of monotone, which uses the distributed
model, state, that even merging two complete distinct branches makes no problems. monotone allows several heads
in one branch, so merging two branches together would probably create multiple heads in the final branch. These
heads could then be further merged several times, until one head is the result
(see http://venge.net/monotone/faq.html).

51

Glossary

Atomic Commit

An atomic action, such as an atomic commit, is an action which should either completely
succeed or completely fail. It is the task of the software to ensure that such an action is
really atomic, which means that no partial changes are stored permanently if an error case
pops up, but a complete rollback to the original, pre-action state is performed.

Branch

In SCM a branch is a development line which exists parallel to the main development line
in the Version Control system without interfering with the latter. It is often used to
separate stable from unstable code.

Bug

A Bug is a misbehavior of a software (a defect). Many think the term goes back to the
early days of computing where a real bug was once found in a mechanical calculating
machine, but in fact already Edison used it to describe little "faults and difficulties"123 in
his inventions.

Change Control Board (CCB)

"A formally constituted group of stakeholders responsible for approving or rejecting
changes to the project baselines."124

Change Management Process

"A procedure to ensure that proposed changes are merited and will not adversely affect
other elements of the plan or interdependent plans."125

Checkout

A checkout is the action which loads files from a remote or local repository in a local
workspace. Some Version Control software locks the checked out files for other users
(MS Visual SourceSafe), while the most VC tools allow concurrent access and apply a
merge later on.

Compilation

The word compilation describes the work of compilers, special software programs, which
translate high-level languages such as C++ into machine code or byte code. Machine
code is dependent on the underlying hardware of a computer, while byte code
independent of the hardware, but needs a special runtime environment to be executed (e.g.
for the programming language Java this is the Java Virtual Machine).

123 http://en.wikipedia.org/wiki/Software_bug
124 http://www.welcom.com/content.cfm?page=136#Change%20Control%20Board%20(CCB)
125 http://w2.byuh.edu/projects/tools/definitions.html

52

Conflict

In Version Control systems which support concurrent access to versioned objects a
conflict pops up if two users altered an item simultaneously and the automatic merge
algorithm of the software is unable to bring together the changes of both authors into one
resulting file. This normally happens for most binary file formats, and for text files only if
the same lines have been altered.

Delta

The difference between two item sets or two items. Directed deltas are used to re-create
revisions in VC systems. They are applied on an earlier revision and create a more recent
revision, but they cannot be used the other way around. In a version graph applying a
directed delta is represented by the edge which spans between two revisions.

Derived objects

Derived objects are artifacts which are created e.g. during the compilation process. Some
of these objects are temporary files which are later used to build the final binary file,
which then includes all machine code to execute a certain program. In general a derived
object is always dependent on a base object, usually a source file, and can be created from
this base object at any time.

Hash

A hash is the output of a hash function which maps an infinite domain to a finite
codomain. It is possible that two or more elements of the domain have the same value in
the codomain, but this is not very likely with diverse input. Many hash functions use an
algorithm which outputs a completely different hash value if only one bit of the input data
changes (like for example SHA-1).

Head

In Version Control the term "Head" often refers to the mainline or trunk of the
development. The term probably originates from CVS which uses this as label for its main
branch.

HTTP

The Hyper Text Transfer Protocol, the protocol which is used throughout the Internet to
deliver web contents. For HTTP there is usually a client, which makes a request, and a
server, which responds to the request e.g. by sending data. HTTP does not allow to push
contents to the client without a request; also the communication between client and
server happens always asynchronous.

53

Intellectual Property (IP)

"Property that derives from the work of the mind or intellect, specifically, an idea,
invention, trade secret, process, program, data, formula, patent, copyright, or trademark
or application, right, or registration."126

ISO 9000 Standard

"A family of standards and guidelines for quality in the manufacturing and service
industries from the International Organization for Standardization (ISO)."127

Kernel

The most important part in any operating system; the layer between the software and the
actual hardware.

Library

In Software Engineering a library is a file which contains a piece of compiled machine
code which can be used by other programs either on build-time (static libraries) or on run-
time (dynamic libraries). A library is a derived object.

Mature Software

The term "mature" in connection with software implies that the software has been
thoroughly tested in the past, is used in production environments and is relatively bug-
free. An indication for the maturity of a software project is in Open Source projects
usually the version number of the project. If the version number starts with a zero (e.g.
"0.12") the software is usually not mature / runs not stable.

Merge

In SCM the automatic process / algorithm which tries to find and merge together the
differences between two revisions of a versioned object. If the process fails, a conflict is
created.

Non-Disclosure Agreement (NDA)

"An agreement signed between two parties that have to disclose confidential information
to each other in order to do business."128

126 http://www.bitpipe.com/tlist/Intellectual-Property.html
127 http://computing-dictionary.thefreedictionary.com/iso+9000
128 http://computing-dictionary.thefreedictionary.com/NDA

54

Patch

In Software Engineering, a patch is a file with a special format, which records forward
deltas based on one or more changed files. The file can then be transferred to another
developer which applies the patch on his workspace and recreates the version the first
developer created. This process is often used if not every developer gains access to a
central repository (e.g. because of missing trust), but can be today circumvented by the
usage of Version Control tools which use the distributed models.

P2P - Peer-To-Peer

P2P is a technique in which every node (every computer) participating in a network is
client and server at the same time. Each node collects data from other nodes and acts as a
servant for other nodes needing the acquired data once again.

Proprietary Software

Copyright-protected, closed-source software, owned by a single company or individual.

Proxy (Server)

A proxy server is a computer which arranges the communication between computers
inside and outside of a network. Remote computers only see and communicate with the
proxy, which directs the data to any requesting local computer. Proxies can act as content
caches (e.g. for websites), as filters for malicious requests and more.

Public Domain (PD)

Public Domain means that absolutely no copyright is applied on a certain piece of artwork
or software. Everyone is free to do whatever he likes to do with the work, without any
restrictions. In some countries, like the UK, PD has no legal status.129

Release

A release is the packaging of all files which are needed to build and / or execute a
software. This may include the source files, data files, configurations, derived (binary)
components etc.

Repository

The data back end of a Version Control system which stores all versioned objects of a
Version Control system. The back end can either use files or a database to store its data.

Revision

A revision is the single state of a single versioned object in a Version Control system.
Some systems, such as monotone, even refer with this term to the state of the whole
repository (all versioned objects).

129 http://computing-dictionary.thefreedictionary.com/public+domain

55

Sandbox

The local workspace which constitutes one of many states available in a Version Control
repository. The developer normally makes changes to the sandbox and commits them
back to the repository to create a new version.

SSL

Secure Socket Layer, a layer which acts in the OSI stack above the transport and below
the application layer, and which enables secure data transfers over public networks.

Tag

A tag is a descriptive mark or label in a repository, which marks a certain version of a
software. Versions may have cryptic internal version identifiers applied and these are not
very meaningful to a developer, so tags help him / her to recognized important versions
much better. Those important versions are versions from the Practical Version Space, i.e.
versions which are reasonable and can be built without errors, such as software releases.

Total Cost of Ownership (TCO)

"The cost of using a computer. It includes the cost of the hardware, software and
upgrades as well as the cost of the inhouse staff and/or consultants that provide training
and technical support."130

Trunk

Another term for the main line in a development hierarchy, see Head.

Tunnel

A special network technique which allows arbitrary data to be transferred "pickaback"
over another, most likely more secure protocol such as SSH. A tunnel has two endings,
one on each side, which need to be established first before the actual data transfer can be
started.

User Space Programs

Programs which run in User-Space, i.e. without interfering with kernel functionality.
Typical kernel functionality is device driver access; if an user space program likes to
access a device, it typically makes a system call (syscall) to the Kernel, which returns the
requested data.

Variant

A parallel (often conflicting) state of a versioned object, e.g. a revision of a file in a
branch.

130 http://computing-dictionary.thefreedictionary.com/TCO

56

Version

A version marks a common state of all versioned objects in a repository. One can
distinguish between Theoretical and Practical Version Space; the first contains all
possible versions, while the latter only contains those versions which actually make sense
in the development.

Virtual Private Network (VPN)

A VPN offers the connection of two LANs (Local Area Networks) over a WAN (Wide
Area Network), such as the connection between two companies. A VPN can be
implemented as Tunnel; since VPNs often transfer private data which must not be
intercepted by third parties, they are secured.

WebDAV

A standard established by the IETF working group WWW Distributed Authoring and
Versioning which enables a file system alike access to web resources via the HTTP
protocol.

57

List of References

[Perens2006] The Open Source Definition, http://www.opensource.org/docs/definition.php, Bruce

Perens, others, 2006, last viewed: 01/25/06

[Rasch2000] A Brief History of Free/Open Source Software Movement, Chris Rasch, 12/26/00,

http://www.openknowledge.org/writing/open-source/scb/brief-open-source-history.html, last viewed:

01/26/06

[King1999] Free Software is a political action - In conversation with Richard M. Stallman, J.J. King,

08/18/1999, http://www.heise.de/tp/r4/artikel/6/6469/1.html, last viewed: 01/26/06

[GNU2006] GNU, Multiple Authors, http://en.wikipedia.org/wiki/GNU, 2006, last viewed: 01/27/06

[Linux2006] Linux Kernel, Multiple Authors, http://en.wikipedia.org/wiki/Linux_kernel, 2006, last

viewed: 01/27/06

[Licenses2006] Various Licenses and Comments about Them, Jonas Kölker and others,

http://www.gnu.org/philosophy/license-list.html, 2006, last viewed: 02/04/06

[Asklund2002] A Study of Configuration Management in Open Source Software Projects, Ulf

Asklund, Lars Bendix, 2002, http://www.cs.lth.se/home/Ulf_Asklund/publications/AB02/CM4OSS-

s.pdf, last viewed: 01/30/06

[Kotulla2002] Management von Softwareprojekten - Erfolgs- und Misserfolgsfaktoren bei

international verteilter Entwicklung, Andreas Kotulla, Deutscher Universitätsverlag, 2002

[Raymond2000] The Magic Cauldron, Eric Steven Raymond, 2000,

http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/, last viewed: 02/08/06

[Negulescu2003] Configuration management, Radu Negulescu, 2003,

http://www.macs.ece.mcgill.ca/~radu/304428W02/cm.pdf, last viewed: 02/10/06

[Sink2004] Source Control HOWTO, Eric Sink, 2004,

http://www.ericsink.com/scm/source_control.html, last viewed 02/10/06

[Conradi1996] Version models for software configuration management, Reidar Conradi, Bernhard

Westfechtel, Technical Report AIB 96-10, RWTH Aachen, 1996

[Perry2005] Managing System Artifacts, Dewayne E. Perry, Introduction to Software Engineering

(Lecture 14), 2005, http://www.ece.utexas.edu/~perry/education/360F/L14.pdf, last viewed: 02/18/06

[Fish2006] Version Control System Comparison, Shlomi Fish, 2006, http://better-

scm.berlios.de/comparison/comparison.html, last viewed: 02/26/06

58

Web links to the online documentation of the reviewed Version Control systems:

• CVSNT Online Manual, http://cvsnt.org/manual/html/

• Version Control with Subversion, http://svnbook.red-bean.com/nightly/en/svn-book.html

• monotone documentation, http://venge.net/monotone/docs/index.html

59

Copyright Notices

License of this Work

This work is licensed under the terms of the GNU Free Documentation License (GNU FDL) version

1.2, or, at your option, any later version. A copy of the license is available in the chapter GNU Free

Documentation License.

License for Wikipedia contents

Resources taken from the Wikipedia project (http://wikipedia.org) are licensed under the terms of the

GNU Free Documentation License (GNU FDL) version 1.2. A copy of the license is available in the

next chapter.

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether
it is published as a printed book. We recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied

60

verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ
in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

61

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the

Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the

Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new

authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
"History" in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant

Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes

62

a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher
of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is
not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4)
to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new

63

problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

64

	Preface
	Vorwort
	Document Conventions
	 1 About Open Source Software
	 1.1 The Origins of and the Drive Behind Open Source
	 1.2 Open Source Licenses
	 1.2.1 GNU General Public License (GNU GPL)
	 1.2.2 GNU Lesser General Public License (GNU LGPL)
	 1.2.3 BSD License
	 1.2.4 Apache Software License
	 1.2.5 Mozilla Public License (MPL)
	 1.2.6 Other Open Licenses not primarily created for Software Licensing

	 1.3 Developing the Open Source Way
	 1.3.1 What is Needed to Organize an Open Source Project?
	 1.3.2 Benefits of Open Source and Possible Business Models

	 2 Version Control
	 2.1 Classification
	 2.2 History
	 2.3 Architectures and Concepts
	 2.3.1 Product Space and Version Space
	 2.3.2 Database vs File System based Repository
	 2.3.3 Centralized vs Distributed Version Control

	 2.4 Tool Shootout – Feature Comparison of Popular OS Versioning Software
	 2.4.1 Matured and Well-known: CVS / CVSNT
	 2.4.2 The New Kid On The Block: Subversion
	 2.4.3 For Highly Distributed Development: monotone
	 2.4.4 Feature Matrix

	 2.5 Best Practices for Version Control
	 2.5.1 Check-in Only What Is Really Needed
	 2.5.2 Commit regularly, in Small, Grouped Portions and only Working Code
	 2.5.3 Branch when Needed and Keep your Branch Up To date with the Trunk
	 2.5.4 Do You Really Need to Lock it?

	Glossary
	List of References
	Copyright Notices
	License of this Work
	License for Wikipedia contents
	GNU Free Documentation License

